Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Trends Biochem Sci ; 44(6): 502-516, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30611609

RESUMEN

Actin is one of the most abundant proteins in eukaryotic cells and the main component of the microfilament system. It plays essential roles in numerous cellular activities, including muscle contraction, maintenance of cell integrity, and motility, as well as transcriptional regulation. Besides interacting with various actin-binding proteins (ABPs), proper actin function is regulated by post-translational modifications (PTMs), such as acetylation, arginylation, oxidation, and others. Here, we explain how actin PTMs can contribute to filament formation and stability, and may have additional actin regulatory functions, which potentially contribute to disease development.


Asunto(s)
Actinas/química , Actinas/metabolismo , Citoesqueleto/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Humanos , Proteínas de Microfilamentos/metabolismo
2.
Am J Med Genet A ; 191(9): 2402-2410, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37387332

RESUMEN

Most human proteins are N-terminally acetylated by N-terminal acetyltransferases (NATs), which play crucial roles in many cellular functions. The NatC complex, comprising the catalytic subunit NAA30 and the auxiliary subunits NAA35 and NAA38, is estimated to acetylate up to 20% of the human proteome in a co-translational manner. Several NAT enzymes have been linked to rare genetic diseases, causing developmental delay, intellectual disability, and heart disease. Here, we report a de novo heterozygous NAA30 nonsense variant c.244C>T (p.Q82*) (NM_001011713.2), which was identified by whole exome sequencing in a 5-year-old boy presenting with global development delay, autism spectrum disorder, hypotonia, tracheal cleft, and recurrent respiratory infections. Biochemical studies were performed to assess the functional impact of the premature stop codon on NAA30's catalytic activity. We find that NAA30-Q82* completely disrupts the N-terminal acetyltransferase activity toward a classical NatC substrate using an in vitro acetylation assay. This finding corresponds with structural modeling showing that the truncated NAA30 variant lacks the entire GNAT domain, which is required for catalytic activity. This study suggests that defective NatC-mediated N-terminal acetylation can cause disease, thus expanding the spectrum of NAT variants linked to genetic disease.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Masculino , Humanos , Preescolar , Acetiltransferasas N-Terminal/metabolismo , Secuencia de Aminoácidos , Proteómica , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Acetiltransferasa C N-Terminal/genética , Acetiltransferasa C N-Terminal/metabolismo
4.
J Biol Chem ; 295(49): 16713-16731, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32978259

RESUMEN

The actin cytoskeleton is of profound importance to cell shape, division, and intracellular force generation. Profilins bind to globular (G-)actin and regulate actin filament formation. Although profilins are well-established actin regulators, the distinct roles of the dominant profilin, profilin 1 (PFN1), versus the less abundant profilin 2 (PFN2) remain enigmatic. In this study, we use interaction proteomics to discover that PFN2 is an interaction partner of the actin N-terminal acetyltransferase NAA80, and further confirm this by analytical ultracentrifugation. Enzyme assays with NAA80 and different profilins demonstrate that PFN2 binding specifically increases the intrinsic catalytic activity of NAA80. NAA80 binds PFN2 through a proline-rich loop, deletion of which abrogates PFN2 binding. Small-angle X-ray scattering shows that NAA80, actin, and PFN2 form a ternary complex and that NAA80 has partly disordered regions in the N-terminus and the proline-rich loop, the latter of which is partly ordered upon PFN2 binding. Furthermore, binding of PFN2 to NAA80 via the proline-rich loop promotes binding between the globular domains of actin and NAA80, and thus acetylation of actin. However, the majority of cellular NAA80 is stably bound to PFN2 and not to actin, and we propose that this complex acetylates G-actin before it is incorporated into filaments. In conclusion, we reveal a functionally specific role of PFN2 as a stable interactor and regulator of the actin N-terminal acetyltransferase NAA80, and establish the modus operandi for NAA80-mediated actin N-terminal acetylation, a modification with a major impact on cytoskeletal dynamics.


Asunto(s)
Acetiltransferasas/metabolismo , Actinas/metabolismo , Profilinas/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Animales , Biocatálisis , Línea Celular , Humanos , Profilinas/química , Profilinas/deficiencia , Profilinas/genética , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Ultracentrifugación , Difracción de Rayos X
5.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656860

RESUMEN

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Asunto(s)
Anomalías Múltiples/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variación Genética , Discapacidad Intelectual/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Adolescente , Adulto , Línea Celular , Niño , Exones/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Linaje , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(17): 4399-4404, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29581253

RESUMEN

Actin, one of the most abundant proteins in nature, participates in countless cellular functions ranging from organelle trafficking and pathogen motility to cell migration and regulation of gene transcription. Actin's cellular activities depend on the dynamic transition between its monomeric and filamentous forms, a process exquisitely regulated in cells by a large number of actin-binding and signaling proteins. Additionally, several posttranslational modifications control the cellular functions of actin, including most notably N-terminal (Nt)-acetylation, a prevalent modification throughout the animal kingdom. However, the biological role and mechanism of actin Nt-acetylation are poorly understood, and the identity of actin's N-terminal acetyltransferase (NAT) has remained a mystery. Here, we reveal that NAA80, a suggested NAT enzyme whose substrate specificity had not been characterized, is Nt-acetylating actin. We further show that actin Nt-acetylation plays crucial roles in cytoskeletal assembly in vitro and in cells. The absence of Nt-acetylation leads to significant differences in the rates of actin filament depolymerization and elongation, including elongation driven by formins, whereas filament nucleation by the Arp2/3 complex is mostly unaffected. NAA80-knockout cells display severely altered cytoskeletal organization, including an increase in the ratio of filamentous to globular actin, increased filopodia and lamellipodia formation, and accelerated cell motility. Together, the results demonstrate NAA80's role as actin's NAT and reveal a crucial role for actin Nt-acetylation in the control of cytoskeleton structure and dynamics.


Asunto(s)
Acetiltransferasas/metabolismo , Citoesqueleto de Actina/enzimología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular/fisiología , Acetiltransferasas N-Terminal/metabolismo , Seudópodos/enzimología , Acetilación , Acetiltransferasas/genética , Citoesqueleto de Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/genética , Células HEK293 , Humanos , Acetiltransferasas N-Terminal/genética , Seudópodos/genética
7.
Proc Natl Acad Sci U S A ; 115(17): 4405-4410, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29581307

RESUMEN

N-terminal (Nt) acetylation is a major protein modification catalyzed by N-terminal acetyltransferases (NATs). Methionine acidic N termini, including actin, are cotranslationally Nt acetylated by NatB in all eukaryotes, but animal actins containing acidic N termini, are additionally posttranslationally Nt acetylated by NAA80. Actin Nt acetylation was found to regulate cytoskeletal dynamics and motility, thus making NAA80 a potential target for cell migration regulation. In this work, we developed potent and selective bisubstrate inhibitors for NAA80 and determined the crystal structure of NAA80 in complex with such an inhibitor, revealing that NAA80 adopts a fold similar to other NAT enzymes but with a more open substrate binding region. Furthermore, in contrast to most other NATs, the substrate specificity of NAA80 is mainly derived through interactions between the enzyme and the acidic amino acids at positions 2 and 3 of the actin substrate and not residues 1 and 2. A yeast model revealed that ectopic expression of NAA80 in a strain lacking NatB activity partially restored Nt acetylation of NatB substrates, including yeast actin. Thus, NAA80 holds intrinsic capacity to posttranslationally Nt acetylate NatB-type substrates in vivo. In sum, the presence of a dominant cotranslational NatB in all eukaryotes, the specific posttranslational actin methionine removal in animals, and finally, the unique structural features of NAA80 leave only the processed actins as in vivo substrates of NAA80. Together, this study reveals the molecular and cellular basis of NAA80 Nt acetylation and provides a scaffold for development of inhibitors for the regulation of cytoskeletal properties.


Asunto(s)
Acetiltransferasas/química , Inhibidores Enzimáticos/química , Acetiltransferasas N-Terminal/química , Actinas/química , Cristalografía por Rayos X , Humanos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad
8.
Mol Cell Proteomics ; 17(12): 2309-2323, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30150368

RESUMEN

N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes and impacts a wide range of cellular processes, including protein quality control and stress tolerance. Despite its prevalence, the mechanisms regulating Nt-acetylation are still nebulous. Here, we present the first global study of Nt-acetylation in yeast cells as they progress to stationary phase in response to nutrient starvation. Surprisingly, we found that yeast cells maintain their global Nt-acetylation levels upon nutrient depletion, despite a marked decrease in acetyl-CoA levels. We further observed two distinct sets of protein N termini that display differential and opposing Nt-acetylation behavior upon nutrient starvation, indicating a dynamic process. The first protein cluster was enriched for annotated N termini showing increased Nt-acetylation in stationary phase compared with exponential growth phase. The second protein cluster was conversely enriched for alternative nonannotated N termini (i.e. N termini indicative of shorter N-terminal proteoforms) and, like histones, showed reduced acetylation levels in stationary phase when acetyl-CoA levels were low. Notably, the degree of Nt-acetylation of Pcl8, a negative regulator of glycogen biosynthesis and two components of the pre-ribosome complex (Rsa3 and Rpl7a) increased during starvation. Moreover, the steady-state levels of these proteins were regulated both by starvation and NatA activity. In summary, this study represents the first comprehensive analysis of metabolic regulation of Nt-acetylation and reveals that specific, rather than global, Nt-acetylation events are subject to metabolic regulation.


Asunto(s)
Acetilcoenzima A/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Acetiltransferasas/metabolismo , Análisis de Varianza , Células Cultivadas , Distribución de Chi-Cuadrado , Ciclinas/metabolismo , Histonas/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Proteoma/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem
9.
Proteomics ; 15(14): 2385-401, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25914051

RESUMEN

The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/metabolismo , Acetilación , Animales , Humanos , Proteómica , Especificidad por Sustrato
10.
Nat Commun ; 14(1): 6774, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891180

RESUMEN

Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.


Asunto(s)
Longevidad , Procesamiento Proteico-Postraduccional , Masculino , Humanos , Secuencia de Aminoácidos , Acetilación , Longevidad/genética , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Mol Biol ; 434(2): 167397, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34896361

RESUMEN

Actin is a hallmark protein of the cytoskeleton in eukaryotic cells, affecting a range of cellular functions. Actin dynamics is regulated through a myriad of actin-binding proteins and post-translational modifications. The mammalian actin family consists of six different isoforms, which vary slightly in their N-terminal (Nt) sequences. During and after synthesis, actins undergo an intricate Nt-processing that yields mature actin isoforms. The ubiquitously expressed cytoplasmic ß-actin is Nt-acetylated by N-alpha acetyltransferase 80 (NAA80) yielding the Nt-sequence Ac-DDDI-. In addition, ß-actin was also reported to be Nt-arginylated by arginyltransferase 1 (ATE1) after further peptidase-mediated processing, yielding RDDI-. To characterize in detail the Nt-processing of actin, we used state-of-the-art proteomics. To estimate the relative cellular levels of Nt-modified proteoforms of actin, we employed NAA80-lacking cells, in which actin was not Nt-acetylated. We found that targeted proteomics is superior to a commercially available antibody previously used to analyze Nt-arginylation of ß-actin. Significantly, despite the use of sensitive mass spectrometry-based techniques, we could not confirm the existence of the previously claimed Nt-arginylated ß-actin (RDDI-) in either wildtype or NAA80-lacking cells. A very minor level of Nt-arginylation of the initially cleaved ß-actin (DDDI-) could be identified, but only in NAA80-lacking cells, not in wildtype cells. We also identified small fractions of cleaved and unmodified ß-actin (DDI-) as well as cleaved and Nt-acetylated ß-actin (Ac-DDI-). In sum, we show that the multi-step Nt-maturation of ß-actin is terminated by NAA80, which Nt-acetylates the exposed Nt-Asp residues, in the virtual absence of previously claimed Nt-arginylation.


Asunto(s)
Acetiltransferasas/metabolismo , Actinas/química , Actinas/metabolismo , Aminoaciltransferasas/metabolismo , Acetilación , Acetiltransferasas/genética , Aminoaciltransferasas/genética , Animales , Citoplasma/metabolismo , Humanos , Ratones Endogámicos C57BL , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica
12.
Biosci Rep ; 41(3)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33600573

RESUMEN

N-terminal acetylation is an irreversible protein modification that primarily occurs co-translationally, and is catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). The NatC complex (NAA30-NAA35-NAA38) is a major NAT enzyme, which was first described in yeast and estimated to N-terminally acetylate ∼20% of the proteome. The activity of NatC is crucial for the correct functioning of its substrates, which include translocation to the Golgi apparatus, the inner nuclear membrane as well as proper mitochondrial function. We show in comparative viability and growth assays that yeast cells lacking MAK3/NAA30 grow poorly in non-fermentable carbon sources and other stress conditions. By using two different experimental approaches and two yeast strains, we show that liquid growth assays are the method of choice when analyzing subtle growth defects, keeping loss of information to a minimum. We further demonstrate that human NAA30 can functionally replace yeast MAK3/NAA30. However, this depends on the genetic background of the yeast strain. These findings indicate that the function of MAK3/NAA30 is evolutionarily conserved from yeast to human. Our yeast system provides a powerful approach to study potential human NAA30 variants using a high-throughput liquid growth assay with various stress conditions.


Asunto(s)
Arilamina N-Acetiltransferasa/genética , Acetiltransferasa C N-Terminal/genética , Proteínas de Saccharomyces cerevisiae/genética , Arilamina N-Acetiltransferasa/metabolismo , División Celular , Prueba de Complementación Genética , Humanos , Acetiltransferasa C N-Terminal/metabolismo , Fenotipo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
BMC Res Notes ; 11(1): 404, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29929531

RESUMEN

OBJECTIVE: N-terminal acetylation is a common protein modification that occurs preferentially co-translationally as the substrate N-terminus is emerging from the ribosome. The major N-terminal acetyltransferase complex A (NatA) is estimated to N-terminally acetylate more than 40% of the human proteome. To form a functional NatA complex the catalytic subunit NAA10 must bind the auxiliary subunit NAA15, which properly folds NAA10 for correct substrate acetylation as well as anchors the entire complex to the ribosome. Mutations in these two genes are associated with various neurodevelopmental disorders in humans. The aim of this study was to investigate the in vivo functionality of a Schizosaccharomyces pombe NAA15 mutant that is known to prevent NatA from associating with ribosomes, but retains NatA-specific activity in vitro. RESULTS: Here, we show that Schizosaccharomyces pombe NatA can functionally replace Saccharomyces cerevisiae NatA. We further demonstrate that the NatA ribosome-binding mutant Naa15 ΔN K6E is unable to rescue the temperature-sensitive growth phenotype of budding yeast lacking NatA. This finding indicates the in vivo importance of the co-translational nature of NatA-mediated N-terminal acetylation.


Asunto(s)
Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Saccharomyces cerevisiae/genética , Acetilación , Secuencia de Aminoácidos , Humanos , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Procesamiento Proteico-Postraduccional , Ribosomas , Proteínas de Saccharomyces cerevisiae
14.
Exp Mol Med ; 50(7): 1-13, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054468

RESUMEN

N-terminal acetylation (Nt-acetylation) is a widespread protein modification among eukaryotes and prokaryotes alike. By appending an acetyl group to the N-terminal amino group, the charge, hydrophobicity, and size of the N-terminus is altered in an irreversible manner. This alteration has implications for the lifespan, folding characteristics and binding properties of the acetylated protein. The enzymatic machinery responsible for Nt-acetylation has been largely described, but significant knowledge gaps remain. In this review, we provide an overview of eukaryotic N-terminal acetyltransferases (NATs) and the impact of Nt-acetylation. We also discuss other functions of known NATs and outline methods for studying Nt-acetylation.


Asunto(s)
Acetiltransferasas N-Terminal/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Humanos , Acetiltransferasas N-Terminal/química , Acetiltransferasas N-Terminal/genética , Proteoma/química , Proteoma/metabolismo
15.
Gene ; 644: 27-37, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29247799

RESUMEN

N-terminal acetylation is a highly abundant and important protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs). In humans, six different NATs have been identified (NatA-NatF), each composed of individual subunits and acetylating a distinct set of substrates. Along with most NATs, NatC acts co-translationally at the ribosome. The NatC complex consists of the catalytic subunit Naa30 and the auxiliary subunits Naa35 and Naa38, and can potentially Nt-acetylate cytoplasmic proteins when the initiator methionine is followed by a bulky hydrophobic/amphipathic residue at position 2. Here, we have identified a splice variant of human NAA30, which encodes a truncated protein named Naa30288. The splice variant was abundantly present in thyroid cancer tissues and in several different human cancer cell lines. Surprisingly, Naa30288 localized predominantly to the nucleus, as opposed to annotated Naa30 which has a cytoplasmic localization. Full-length Naa30 acetylated a classical NatC substrate peptide in vitro, whereas no significant NAT activity was detected for Naa30288. Due to the nuclear localization, we also examined acetyltransferase activity towards lysine residues. Neither full-length Naa30 nor Naa30288 displayed any lysine acetyltransferase activity. Overexpression of full-length Naa30 increased cell viability via inhibition of apoptosis. In contrast, Naa30288 did not exert an anti-apoptotic effect. In sum, we identified a novel and widely expressed Naa30 isoform with a potential non-catalytic role in the nucleus.


Asunto(s)
Núcleo Celular/genética , Acetiltransferasa C N-Terminal/genética , Acetiltransferasas N-Terminal/genética , Isoformas de Proteínas/genética , Empalme del ARN/genética , Acetilación , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Células HEK293 , Células HeLa , Humanos , Lisina/genética , Células MCF-7 , Procesamiento Proteico-Postraduccional/genética , Ribosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA