Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO Rep ; 15(9): 956-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25092792

RESUMEN

UBL5 is an atypical ubiquitin-like protein, whose function in metazoans remains largely unexplored. We show that UBL5 is required for sister chromatid cohesion maintenance in human cells. UBL5 primarily associates with spliceosomal proteins, and UBL5 depletion decreases pre-mRNA splicing efficiency, leading to globally enhanced intron retention. Defective sister chromatid cohesion is a general consequence of dysfunctional pre-mRNA splicing, resulting from the selective downregulation of the cohesion protection factor Sororin. As the UBL5 yeast orthologue, Hub1, also promotes spliceosome functions, our results show that UBL5 plays an evolutionary conserved role in pre-mRNA splicing, the integrity of which is essential for the fidelity of chromosome segregation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proteínas del Ojo/genética , Precursores del ARN/genética , Empalme del ARN/genética , Ubiquitinas/genética , Cromátides/genética , Segregación Cromosómica/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Ligasas/genética , Mitosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética , Ubiquitinas/metabolismo
2.
Dev Cell ; 12(3): 467-74, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17336911

RESUMEN

Stem cell asymmetric division requires tight control of spindle orientation. To study this key process, we have recorded Drosophila larval neural stem cells (NBs) engineered to express fluorescent reporters for microtubules, pericentriolar material (PCM), and centrioles. We have found that early in the cell cycle, the two centrosomes become unequal: one organizes an aster that stays near the apical cortex for most of the cell cycle, while the other loses PCM and microtubule-organizing activity, and moves extensively throughout the cell until shortly before mitosis when, located near the basal cortex, it recruits PCM and organizes the second mitotic aster. Upon division, the apical centrosome remains in the stem cell, while the other goes into the differentiating daughter. Apical aster maintenance requires the function of Pins. These results reveal that spindle orientation in Drosophila larval NBs is determined very early in the cell cycle, and is mediated by asymmetric centrosome function.


Asunto(s)
División Celular/fisiología , Centrosoma/metabolismo , Drosophila/embriología , Sistema Nervioso/embriología , Huso Acromático/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Polaridad Celular/fisiología , Células Cultivadas , Centriolos/genética , Centriolos/metabolismo , Centriolos/ultraestructura , Centrosoma/ultraestructura , Regulación hacia Abajo/fisiología , Drosophila/citología , Drosophila/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Sistema Nervioso/metabolismo , Sistema Nervioso/ultraestructura , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Región Organizadora del Nucléolo/ultraestructura , Huso Acromático/ultraestructura , Células Madre/ultraestructura
3.
Curr Biol ; 17(20): 1735-45, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17935995

RESUMEN

BACKGROUND: Centrosomes, the major organizers of the microtubule network in most animal cells, are composed of centrioles embedded in a web of pericentriolar material (PCM). Recruitment and stabilization of PCM on the centrosome is a centriole-dependent function. Compared to the considerable number of PCM proteins known, the molecular characterization of centrioles is still very limited. Only a few centriolar proteins have been identified so far in Drosophila, most related to centriole duplication. RESULTS: We have cloned asterless (asl) and found that it encodes a 120 kD highly coiled-coil protein that is a constitutive pancentriolar and basal body component. Loss of asl function impedes the stabilization/maintenance of PCM at the centrosome. In embryos deficient for Asl, development is arrested right after fertilization. Asl shares significant homology with Cep 152, a protein described as a component of the human centrosome for which no functional data is yet available. CONCLUSIONS: The cloning of asl offers new insight into the molecular composition of Drosophila centrioles and a possible model for the role of its human homolog. In addition, the phenotype of asl-deficient flies reveals that a functional centrosome is required for Drosophila embryo development.


Asunto(s)
Centriolos/fisiología , Centrosoma/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Clonación Molecular , Cartilla de ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Genes de Insecto , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
4.
Sci Rep ; 9(1): 8382, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182720

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 8(1): 2822, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434216

RESUMEN

Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.


Asunto(s)
Autofagia/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Citometría de Flujo , Colorantes Fluorescentes , Ensayos Analíticos de Alto Rendimiento , Humanos , Células K562 , Microscopía Fluorescente , Interferencia de ARN , ARN Interferente Pequeño , Espectrometría de Fluorescencia
6.
Cell Cycle ; 9(2): 312-20, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20023427

RESUMEN

Progression into mitosis in the presence of DNA damage leads to spindle checkpoint (SAC) dependent mitotic delays and cytokinesis failure. In Drosophila embryos, DNA damage does not delay mitotic entry but triggers Checkpoint kinase-2 (Chk2) kinase dependent delays in mitotic exit. It is unclear if damage associated mitotic delays in human cells result from kinase signaling or breaks in centromere DNA that disrupt kinetochore function and activate the SAC. We show that transgenic expression of Human Chk2 in a Drosophila chk2 mutant background restores damage induced mitotic delays during early embryogenesis. Parental HCT116 colorectal cancer cells that progress into mitosis following DNA damage, due to either G(2) checkpoint adaptation or G(2) checkpoint abrogation by caffeine or the Chk1 inhibitor UCN-01, delay in mitosis and show high rates of cytokinesis failure. Significantly, these mitotic responses are suppressed in HCT116 chk2 knockout cells, and the response is restored by transgenic expression of wild type Chk2. However, both parental and chk2(-/-)HCT116 cells arrested in G(2) for prolonged periods by DNA damage prior to release from the G(2) block do show significant mitotic delays. Chk2 thus appears to have a conserved function in control of mitotic progression following G(2)/M transition with DNA damage. However, prolonged G(2) arrest with DNA damage can trigger Chk2 independent mitotic delays that may be secondary to kinetochore disruption.


Asunto(s)
Daño del ADN , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Cafeína/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Neoplasias Colorrectales/metabolismo , Roturas del ADN de Doble Cadena , Drosophila/embriología , Drosophila/metabolismo , Fase G2 , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Estaurosporina/análogos & derivados , Estaurosporina/farmacología
7.
Cell Cycle ; 8(18): 2951-63, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19713770

RESUMEN

Progression through the G(2)/M transition following DNA damage is linked to cytokinesis failure and mitotic death. In four different transformed cell lines and two human embryonic stem cell lines, we find that DNA damage triggers mitotic chromatin decondensation and global phosphorylation of histone H2AX, which has been associated with apoptosis. However, extended time-lapse studies in HCT116 colorectal cancer cells indicate that death does not take place during mitosis, but 72% of cells die within 3 days of mitotic exit. By contrast, only 11% of cells in the same cultures that remained in interphase died, suggesting that progression through mitosis enhances cell death following DNA damage. These time-lapse studies also confirmed that DNA damage leads to high rates of cytokinesis failure, but showed that cells that completed cytokinesis following damage died at higher rates than cells that failed to complete division. Therefore, post-mitotic cell death is not a response to cytokinesis failure or polyploidy. We also show that post-mitotic cell death is largely independent of p53 and is only partially suppressed by the apical caspase inhibitor Z-VAD-FMK. These findings suggest that progression through mitosis following DNA damage initiates a p53- and caspase-independent cell death response that prevents propagation of genetic lesions.


Asunto(s)
Muerte Celular/genética , Daño del ADN , Mitosis , Caspasas , Línea Celular , Línea Celular Tumoral , Citocinesis , Células Madre Embrionarias , Células HCT116 , Humanos , Cinética , Proteína p53 Supresora de Tumor
8.
J Cell Biochem ; 91(5): 904-14, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15034926

RESUMEN

The centrosome is the main MT organizing center in animal cells, and has traditionally been regarded as essential for organization of the bipolar spindle that facilitates chromosome segregation during mitosis. Centrosomes are associated with the poles of the mitotic spindle, and several cell types require these organelles for spindle formation. However, most plant cells and some female meiotic systems get along without this organelle, and centrosome-independent spindle assembly has now been identified within some centrosome containing cells. How can such observations, which point to mutually incompatible conclusions regarding the requirement of centrosomes in spindle formation, be interpreted? With emphasis on the functional role of centrosomes, this article summarizes the current models of spindle formation, and outlines how observations obtained from spindle assembly assays in vitro may reconcile conflicting opinions about the mechanism of spindle assembly. It is further described how Drosophila mutants are used to address the functional interrelationships between individual centrosomal proteins and spindle formation in vivo.


Asunto(s)
Centrosoma/fisiología , Meiosis/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/fisiología , Animales , Ciclo Celular/fisiología , Cromatina/fisiología , Segregación Cromosómica/fisiología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Humanos , Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Centro Organizador de los Microtúbulos/fisiología , Microtúbulos/metabolismo , Modelos Biológicos , Mutación/genética , Huso Acromático/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA