Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 15: 54, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24450656

RESUMEN

BACKGROUND: Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. K. pneumoniae Kp13 is a multidrug-resistant strain responsible for causing a large nosocomial outbreak in a teaching hospital located in Southern Brazil. Kp13 produces K. pneumoniae carbapenemase (KPC-2) but is unrelated to isolates belonging to ST 258 and ST 11, the main clusters associated with the worldwide dissemination of KPC-producing K. pneumoniae. In this report, we perform a genomic comparison between Kp13 and each of the following three K. pneumoniae genomes: MGH 78578, NTUH-K2044 and 342. RESULTS: We have completely determined the genome of K. pneumoniae Kp13, which comprises one chromosome (5.3 Mbp) and six plasmids (0.43 Mbp). Several virulence and resistance determinants were identified in strain Kp13. Specifically, we detected genes coding for six beta-lactamases (SHV-12, OXA-9, TEM-1, CTX-M-2, SHV-110 and KPC-2), eight adhesin-related gene clusters, including regions coding for types 1 (fim) and 3 (mrk) fimbrial adhesins. The rmtG plasmidial 16S rRNA methyltransferase gene was also detected, as well as efflux pumps belonging to five different families. Mutations upstream the OmpK35 porin-encoding gene were evidenced, possibly affecting its expression. SNPs analysis relative to the compared strains revealed 141 mutations falling within CDSs related to drug resistance which could also influence the Kp13 lifestyle. Finally, the genetic apparatus for synthesis of the yersiniabactin siderophore was identified within a plasticity region. Chromosomal architectural analysis allowed for the detection of 13 regions of difference in Kp13 relative to the compared strains. CONCLUSIONS: Our results indicate that the plasticity occurring at many hierarchical levels (from whole genomic segments to individual nucleotide bases) may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens. The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains.


Asunto(s)
Genoma Bacteriano , Klebsiella pneumoniae/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bombas Iónicas/genética , Bombas Iónicas/metabolismo , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Polimixinas/farmacología , Análisis de Secuencia de ADN , Virulencia/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
2.
Mech Ageing Dev ; 219: 111942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762037

RESUMEN

Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.


Asunto(s)
Redes Reguladoras de Genes , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Circular/metabolismo , ARN Circular/genética , Encéfalo/metabolismo , Encéfalo/patología , MicroARNs/metabolismo , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Epigénesis Genética , Regulación de la Expresión Génica , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Endógeno Competitivo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38829161

RESUMEN

Introduction: COVID-19 is an infectious disease caused by SARS-CoV-2 that has become a serious threat to public health owing to its rapid spread from aerosols from infected people. Despite being considered a strictly human disease, there are reports in the literature about animals with confirmed presence of the virus. Aim: Owing to the scarcity of scientific literature on the potential for infection of animals and their importance for One Health, the objective of this work was to research SARS-CoV-2 RNA in felines (Felis silvestris catus) and dogs (Canis lupus familiaris) domiciled. Materials and Methods: Oropharyngeal swabs were collected from domestic dogs and cats belonging to patients diagnosed with COVID-19 from August to October 2021 and residents of the northwest and west regions of Paraná, Brazil. Results: Of the 34 samples collected, 14 were from dogs and 20 from cats. Three of these samples tested positive in real-time PCR, and two of them were also positive in the immunochromatographic test. After testing positive in real-time PCR, the samples underwent genetic sequencing using the Illumina COVIDSeq test. Of the 34 samples collected, three (9%), all of them female and from the feline species, tested positive in real-time PCR, with two of these (67%) also testing positive in the immunochromatographic test. Regarding sequencing, it was possible to sequence the three samples aligned with the AY.101 lineage, corresponding to the Delta variant. Conclusion: The occurrence of SARS-CoV-2 infection in dogs and cats is seen as an unintended event with significant implications for public health, including its potential transmission to other animal species. Further research is required to enhance our understanding of how this disease spreads among these animals and its broader impact on One Health initiatives.

4.
Pathogens ; 11(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35055989

RESUMEN

The symbiosis in trypanosomatids is a mutualistic relationship characterized by extensive metabolic exchanges between the bacterium and the protozoan. The symbiotic bacterium can complete host essential metabolic pathways, such as those for heme, amino acid, and vitamin production. Experimental assays indicate that the symbiont acquires phospholipids from the host trypanosomatid, especially phosphatidylcholine, which is often present in bacteria that have a close association with eukaryotic cells. In this work, an in-silico study was performed to find genes involved in the glycerophospholipid (GPL) production of Symbiont Harboring Trypanosomatids (SHTs) and their respective bacteria, also extending the search for trypanosomatids that naturally do not have symbionts. Results showed that most genes for GPL synthesis are only present in the SHT. The bacterium has an exclusive sequence related to phosphatidylglycerol production and contains genes for phosphatidic acid production, which may enhance SHT phosphatidic acid production. Phylogenetic data did not indicate gene transfers from the bacterium to the SHT nucleus, proposing that enzymes participating in GPL route have eukaryotic characteristics. Taken together, our data indicate that, differently from other metabolic pathways described so far, the symbiont contributes little to the production of GPLs and acquires most of these molecules from the SHT.

5.
PLoS Negl Trop Dis ; 15(6): e0009507, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125832

RESUMEN

Congenital Zika Syndrome (CZS) is a critical illness with a wide range of severity caused by Zika virus (ZIKV) infection during pregnancy. Life-threatening neurodevelopmental dysfunctions are among the most common phenotypes observed in affected newborns. Risk factors that contribute to susceptibility and response to ZIKV infection may be related to the virus itself, the environment, and maternal genetic background. Nevertheless, the newborn's genetic contribution to the critical illness is still not elucidated. Here, we aimed to identify possible genetic variants as well as relevant biological pathways that might be associated with CZS phenotypes. For this purpose, we performed a whole-exome sequencing in 40 children born to women with confirmed exposure to ZIKV during pregnancy. We investigated the occurrence of rare harmful single-nucleotide variants (SNVs) possibly associated with inborn errors in genes ontologically related to CZS phenotypes. Moreover, an exome-wide association analysis was also performed using a case-control design (29 CZS cases and 11 controls), for both common and rare variants. Five out of the 29 CZS patients harbored known pathogenic variants likely to contribute to mild to severe manifestations observed. Approximately, 30% of affected individuals carried at least one pathogenic or likely pathogenic SNV in genes candidates to play a role in CZS. Our common variant association analysis detected a suggestive protective effect of the rs2076469 in DISP3 gene (p-value: 1.39 x 10-5). The IL12RB2 gene (p-value: 2.18x10-11) also showed an unusual distribution of nonsynonymous rare SNVs in control samples. Finally, genes harboring harmful variants are involved in processes related to CZS phenotypes such as neurological development and immunity. Therefore, both rare and common variations may be likely to contribute as the underlying genetic cause of CZS susceptibility. The variations and pathways identified in this study may also have implications for the development of therapeutic strategies in the future.


Asunto(s)
Predisposición Genética a la Enfermedad , Complicaciones Infecciosas del Embarazo/virología , Infección por el Virus Zika/congénito , Infección por el Virus Zika/genética , Brasil , Estudios de Casos y Controles , Femenino , Humanos , Recién Nacido , Masculino , Polimorfismo de Nucleótido Simple , Embarazo , Complicaciones Infecciosas del Embarazo/genética , Secuenciación del Exoma , Virus Zika/fisiología
6.
Braz J Microbiol ; 47(4): 835-845, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27522532

RESUMEN

Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance) and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.


Asunto(s)
Metagenoma , Microbiota , Ríos/microbiología , Urbanización , Microbiología del Agua , Código de Barras del ADN Taxonómico , Ecosistema , Metabolismo Energético , Humanos , Redes y Vías Metabólicas , Metagenómica , Filogenia , ARN Ribosómico 16S/genética
7.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17726

RESUMEN

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

8.
Phytopathology, v. 110, n. 11, p. 1751-1755, jun. 2020
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3065

RESUMEN

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

9.
Genet Mol Res ; 3(1): 53-63, 2004 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15100987

RESUMEN

In the finishing phase of the Chromobacterium violaceum genome project, the shotgun sequences were assembled into 57 contigs that were then organized into 19 scaffolds, using the information from shotgun and cosmid clones. Among the 38 ends resulting from the 19 scaffolds, 10 ended with sequences corresponding to rRNA genes (seven ended with the 5S rRNA gene and three ended with the 16S rRNA gene). The 28 non-ribosomal ends were extended using the PCR-assisted contig extension (PACE) methodology, which immediately closed 15 real gaps. We then applied PACE to the 16S rRNA gene containing ends, resulting in eight different sequences that were correctly assembled within the C. violaceum genome by combinatory PCR strategy, with primers derived from the non-repetitive genomic region flanking the 16S and 5S rRNA gene. An oriented combinatory PCR was used to correctly position the two versions (copy A and copy B, which differ by the presence or absence of a 100-bp insert); it revealed six copies corresponding to copy A, and two to copy B. We estimate that the use of PACE, followed by combinatory PCR, accelerated the finishing phase of the C. violaceum genome project by at least 40%.


Asunto(s)
Chromobacterium/genética , Genoma Bacteriano , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico/genética , Mapeo Contig/métodos
10.
Genet Mol Res ; 3(1): 102-16, 2004 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15100992

RESUMEN

Chromobacterium violaceum is a Gram-negative bacterium, abundant in a variety of ecosystems in tropical and subtropical regions, including the water and borders of the Negro River, a major component of the Amazon Basin. As a free-living microorganism, C. violaceum is exposed to a series of variable conditions, such as different sources and abundance of nutrients, changes in temperature and pH, toxic compounds and UV rays. These variations, and the wide range of environments, require great adaptability and strong protective systems. The complete genome sequencing of this bacterium has revealed an enormous number and variety of ORFs associated with alternative pathways for energy generation, transport-related proteins, signal transduction, cell motility, secretion, and secondary metabolism. Additionally, the limited availability of iron in most environments can be overcome by iron-chelating compounds, iron-storage proteins, and by several proteins related to iron metabolism in the C. violaceum genome. Osmotically inducible proteins, transmembrane water-channel, and other membrane porins may be regulating the movement of water and maintaining the cell turgor, activities which play an important role in the adaptation to variations in osmotic pressure. Several proteins related to tolerance against antimicrobial compounds, heavy metals, temperature, acid and UV light stresses, others that promote survival under starvation conditions, and enzymes capable of detoxifying reactive oxygen species were also detected in C. violaceum. All these features together help explain its remarkable competitiveness and ability to survive under different types of environmental stress.


Asunto(s)
Adaptación Fisiológica/fisiología , Chromobacterium/fisiología , Ecosistema , Estrés Oxidativo/fisiología , Adaptación Fisiológica/genética , Chromobacterium/genética , Chromobacterium/metabolismo , Concentración de Iones de Hidrógeno , Sistemas de Lectura Abierta/genética , Sistemas de Lectura Abierta/fisiología , Estrés Oxidativo/genética , Temperatura , Rayos Ultravioleta
11.
Braz. j. microbiol ; 47(4): 835-845, Oct.-Dec. 2016. graf
Artículo en Inglés | LILACS | ID: biblio-828196

RESUMEN

Abstract Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance) and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.


Asunto(s)
Humanos , Urbanización , Microbiología del Agua , Ríos/microbiología , Metagenoma , Microbiota , Filogenia , ARN Ribosómico 16S/genética , Ecosistema , Metabolismo Energético , Redes y Vías Metabólicas , Metagenómica , Código de Barras del ADN Taxonómico
12.
Genet. mol. biol ; 30(1,suppl): 174-181, 2007. ilus, tab
Artículo en Inglés | LILACS | ID: lil-450432

RESUMEN

Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw) cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

13.
Genet. mol. biol ; 30(1,suppl): 236-244, 2007. tab
Artículo en Inglés | LILACS | ID: lil-450440

RESUMEN

Restriction and Modification (R-M) systems are present in all Mycoplasma species sequenced so far. The presence of these genes poses barriers to gene transfer and could protect the cell against phage infections. The number and types of R-M genes between different Mycoplasma species are variable, which is characteristic of a polymorphism. The majority of the CDSs code for Type III R-M systems and particularly for methyltransferase enzymes, which suggests that functions other than the protection against the invasion of heterologous DNA may exist. A possible function of these enzymes could be the protection against the invasion of other but similar R-M systems. In Mycoplasma hyopneumoniae strain J, three of the putative methyltransferase genes were clustered in a region forming a genomic island. Many R-M CDSs were mapped in the vicinity of transposable elements suggesting an association between these genes and reinforcing the idea of R-M systems as mobile selfish DNA. Also, many R-M genes present repeats within their coding sequences, indicating that their expression is under the control of phase variation mechanisms. Altogether, these data suggest that R-M systems are a remarkable characteristic of Mycoplasma species and are probably involved in the adaptation of these bacteria to different environmental conditions.

14.
Genet. mol. biol ; 30(1,suppl): 169-173, 2007.
Artículo en Inglés | LILACS | ID: lil-450431

RESUMEN

Mollicutes are cell wall-less bacteria with a genome characterized by its small size. Chromosomal rearrangements help these organisms evade host immune surveillance and hence cause disease. Our goal was to determine genes shared by Mollicutes genomes using the bidirectional best hit methodology. The twelve studied Mollicutes share 210 genes, most of which (> 60 percent) fall into the following COG categories: translation, ribosomal structure and biogenesis; DNA replication, recombination and repair; nucleotide transport and metabolism and energy production and conversion. Thirty Mollicute-specific genes were identified, 22 of them previously described as essential genes in Mycoplasma genitalium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA