RESUMEN
Circulating tumor DNA (ctDNA) is a new circulating tumor biomarker which might be used as a prognostic biomarker in a way similar to circulating tumor cells (CTCs). Here, we used the high prevalence of TP53 mutations in triple negative breast cancer (TNBC) to compare ctDNA and CTC detection rates and prognostic value in metastatic TNBC patients. Forty patients were enrolled before starting a new line of treatment. TP53 mutations were characterized in archived tumor tissues and in plasma DNA using two next generation sequencing (NGS) platforms in parallel. Archived tumor tissue was sequenced successfully for 31/40 patients. TP53 mutations were found in 26/31 (84%) of tumor samples. The same mutation was detected in the matched plasma of 21/26 (81%) patients with an additional mutation found only in the plasma for one patient. Mutated allele fractions ranged from 2 to 70% (median 5%). The observed correlation between the two NGS approaches (R(2) = 0.903) suggested that ctDNA levels data were quantitative. Among the 27 patients with TP53 mutations, CTC count was ≥1 in 19 patients (70%) and ≥5 in 14 patients (52%). ctDNA levels had no prognostic impact on time to progression (TTP) or overall survival (OS), whereas CTC numbers were correlated with OS (p = 0.04) and marginally with TTP (p = 0.06). Performance status and elevated LDH also had significant prognostic impact. Here, absence of prognostic impact of baseline ctDNA level suggests that mechanisms of ctDNA release in metastatic TNBC may involve, beyond tumor burden, biological features that do not dramatically affect patient outcome.
Asunto(s)
ADN de Neoplasias/sangre , Células Neoplásicas Circulantes/patología , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/patología , Biomarcadores de Tumor/sangre , Progresión de la Enfermedad , Femenino , Humanos , Mutación/genética , Pronóstico , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
INTRODUCTION: Circulating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement. METHODS: CellSearch® images (N = 272) of either CTCs or white blood cells or artifacts from 109 non-metastatic (M0) and 22 metastatic (M1) breast cancer patients from reported studies were sent to 22 readers from 15 academic laboratories and 8 readers from two Veridex laboratories. Each image was scored as No CTC vs CTC HER2- vs CTC HER2+. The 8 Veridex readers were summarized to a Veridex Consensus (VC) to compare each academic reader using % agreement and kappa (κ) statistics. Agreement was compared according to disease stage and CTC counts using the Wilcoxon signed rank test. RESULTS: For CTC definition (No CTC vs CTC), the median agreement between academic readers and VC was 92% (range 69 to 97%) with a median κ of 0.83 (range 0.37 to 0.93). Lower agreement was observed in images from M0 (median 91%, range 70 to 96%) compared to M1 (median 98%, range 64 to 100%) patients (P < 0.001) and from M0 and <3CTCs (median 87%, range 66 to 95%) compared to M0 and ≥3CTCs samples (median 95%, range 77 to 99%), (P < 0.001). For CTC HER2 expression (HER2- vs HER2+), the median agreement was 87% (range 51 to 95%) with a median κ of 0.74 (range 0.25 to 0.90). CONCLUSIONS: The inter-reader agreement for CTC definition was high. Reduced agreement was observed in M0 patients with low CTC counts. Continuous training and independent image review are required.
Asunto(s)
Neoplasias de la Mama/patología , Recuento de Células/instrumentación , Oncología Médica/instrumentación , Células Neoplásicas Circulantes/patología , Neoplasias de la Mama/sangre , Neoplasias de la Mama/metabolismo , Recuento de Células/normas , Femenino , Humanos , Cooperación Internacional , Laboratorios/normas , Oncología Médica/normas , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Receptor ErbB-2/metabolismo , Estándares de Referencia , Reproducibilidad de los ResultadosRESUMEN
Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been recently investigated in several cancer types, but their respective clinical significance remains to be determined. In our prospective study, we compared the detection rate and the prognostic value of these two circulating biomarkers in patients with metastatic uveal melanoma. GNAQ/GNA11 mutations were characterized in archived tumor tissue. Using a highly sensitive and mutation-specific bidirectional pyrophosphorolysis-activated polymerization (bi-PAP) technique, GNAQ c.626A>T, GNAQ c.626A>C and GNA11 c.626A>T copy numbers were quantified in plasma from 12 mL of blood. CTCs were detected at the same time in 7.5 mL of blood by the CellSearch technique. Patient characteristics and outcome were prospectively collected. CTCs (≥1) were detected in 12 of the 40 included patients (30%, range 1-20). Among the 26 patients with known detectable mutations, ctDNA was detected and quantified in 22 (84%, range 4-11,421 copies/mL). CTC count and ctDNA levels were associated with the presence of miliary hepatic metastasis (p = 0.004 and 0.03, respectively), with metastasis volume (p = 0.005 and 0.004) and with each other (p < 0.0001). CTC count and ctDNA levels were both strongly associated with progression-free survival (p = 0.003 and 0.001) and overall survival (p = 0.0009 and <0.0001). In multivariate analyses, ctDNA appeared to be a better prognostic marker than CTC. In conclusion, ctDNA and CTC are correlated and both have poor prognostic significance. CTC detection can be performed in every patient but, in patients with detectable mutations, ctDNA was more frequently detected than CTC and has possibly more prognostic value.