Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(52): 33051-33060, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318169

RESUMEN

Microscopic evaluation of resected tissue plays a central role in the surgical management of cancer. Because optical microscopes have a limited depth-of-field (DOF), resected tissue is either frozen or preserved with chemical fixatives, sliced into thin sections placed on microscope slides, stained, and imaged to determine whether surgical margins are free of tumor cells-a costly and time- and labor-intensive procedure. Here, we introduce a deep-learning extended DOF (DeepDOF) microscope to quickly image large areas of freshly resected tissue to provide histologic-quality images of surgical margins without physical sectioning. The DeepDOF microscope consists of a conventional fluorescence microscope with the simple addition of an inexpensive (less than $10) phase mask inserted in the pupil plane to encode the light field and enhance the depth-invariance of the point-spread function. When used with a jointly optimized image-reconstruction algorithm, diffraction-limited optical performance to resolve subcellular features can be maintained while significantly extending the DOF (200 µm). Data from resected oral surgical specimens show that the DeepDOF microscope can consistently visualize nuclear morphology and other important diagnostic features across highly irregular resected tissue surfaces without serial refocusing. With the capability to quickly scan intact samples with subcellular detail, the DeepDOF microscope can improve tissue sampling during intraoperative tumor-margin assessment, while offering an affordable tool to provide histological information from resected tissue specimens in resource-limited settings.


Asunto(s)
Carcinoma/patología , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias de la Boca/patología , Algoritmos , Animales , Biopsia/instrumentación , Biopsia/métodos , Biopsia/normas , Calibración , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/normas , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Porcinos
2.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067824

RESUMEN

We present a novel architecture for the design of single-photon detecting arrays that captures relative intensity or timing information from a scene, rather than absolute. The proposed method for capturing relative information between pixels or groups of pixels requires very little circuitry, and thus allows for a significantly higher pixel packing factor than is possible with per-pixel TDC approaches. The inherently compressive nature of the differential measurements also reduces data throughput and lends itself to physical implementations of compressed sensing, such as Haar wavelets. We demonstrate this technique for HDR imaging and LiDAR, and describe possible future applications.

3.
Opt Express ; 30(19): 34239-34255, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242441

RESUMEN

We present a polarization-based approach to perform diffuse-specular separation from a single polarimetric image, acquired using a flexible, practical capture setup. Our key technical insight is that, unlike previous polarization-based separation methods that assume completely unpolarized diffuse reflectance, we use a more general polarimetric model that accounts for partially polarized diffuse reflections. We capture the scene with a polarimetric sensor and produce an initial analytical diffuse-specular separation that we further pass into a deep network trained to refine the separation. We demonstrate that our combination of analytical separation and deep network refinement produces state-of-the-art diffuse-specular separation, which enables image-based appearance editing of dynamic scenes and enhanced appearance estimation.

4.
J Opt Soc Am A Opt Image Sci Vis ; 39(10): 1903-1912, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215563

RESUMEN

Lensless cameras are ultra-thin imaging systems that replace the lens with a thin passive optical mask and computation. Passive mask-based lensless cameras encode depth information in their measurements for a certain depth range. Early works have shown that this encoded depth can be used to perform 3D reconstruction of close-range scenes. However, these approaches for 3D reconstructions are typically optimization based and require strong hand-crafted priors and hundreds of iterations to reconstruct. Moreover, the reconstructions suffer from low resolution, noise, and artifacts. In this work, we propose FlatNet3D-a feed-forward deep network that can estimate both depth and intensity from a single lensless capture. FlatNet3D is an end-to-end trainable deep network that directly reconstructs depth and intensity from a lensless measurement using an efficient physics-based 3D mapping stage and a fully convolutional network. Our algorithm is fast and produces high-quality results, which we validate using both simulated and real scenes captured using PhlatCam.

5.
Opt Express ; 29(23): 38540-38556, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808905

RESUMEN

Conventional continuous-wave amplitude-modulated time-of-flight (CWAM ToF) cameras suffer from a fundamental trade-off between light throughput and depth of field (DoF): a larger lens aperture allows more light collection but suffers from significantly lower DoF. However, both high light throughput, which increases signal-to-noise ratio, and a wide DoF, which enlarges the system's applicable depth range, are valuable for CWAM ToF applications. In this work, we propose EDoF-ToF, an algorithmic method to extend the DoF of large-aperture CWAM ToF cameras by using a neural network to deblur objects outside of the lens's narrow focal region and thus produce an all-in-focus measurement. A key component of our work is the proposed large-aperture ToF training data simulator, which models the depth-dependent blurs and partial occlusions caused by such apertures. Contrary to conventional image deblurring where the blur model is typically linear, ToF depth maps are nonlinear functions of scene intensities, resulting in a nonlinear blur model that we also derive for our simulator. Unlike extended DoF for conventional photography where depth information needs to be encoded (or made depth-invariant) using additional hardware (phase masks, focal sweeping, etc.), ToF sensor measurements naturally encode depth information, allowing a completely software solution to extended DoF. We experimentally demonstrate EDoF-ToF increasing the DoF of a conventional ToF system by 3.6 ×, effectively achieving the DoF of a smaller lens aperture that allows 22.1 × less light. Ultimately, EDoF-ToF enables CWAM ToF cameras to enjoy the benefits of both high light throughput and a wide DoF.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34966190

RESUMEN

We introduce a novel image reconstruction method for time-resolved diffuse optical tomography (DOT) that yields submillimeter resolution in less than a second. This opens the door to high-resolution real-time DOT in imaging of the brain activity. We call this approach the sensitivity equation based noniterative sparse optical reconstruction (SENSOR) method. The high spatial resolution is achieved by implementing an asymptotic l 0-norm operator that guarantees to obtain sparsest representation of reconstructed targets. The high computational speed is achieved by employing the nontruncated sensitivity equation based noniterative inverse formulation combined with reduced sensing matrix and parallel computing. We tested the new method with numerical and experimental data. The results demonstrate that the SENSOR algorithm can achieve 1 mm3 spatial-resolution optical tomographic imaging at depth of ∼60 mean free paths (MFPs) in 20∼30 milliseconds on an Intel Core i9 processor.

7.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167411

RESUMEN

Immediate assessment of structural integrity of important civil infrastructures, like bridges, hospitals, or dams, is of utmost importance after natural disasters. Currently, inspection is performed manually by engineers who look for local damages and their extent on significant locations of the structure to understand its implication on its global stability. However, the whole process is time-consuming and prone to human errors. Due to their size and extent, some regions of civil structures are hard to gain access for manual inspection. In such situations, a vision-based system of Unmanned Aerial Vehicles (UAVs) programmed with Artificial Intelligence algorithms may be an effective alternative to carry out a health assessment of civil infrastructures in a timely manner. This paper proposes a framework of achieving the above-mentioned goal using computer vision and deep learning algorithms for detection of cracks on the concrete surface from its image by carrying out image segmentation of pixels, i.e., classification of pixels in an image of the concrete surface and whether it belongs to cracks or not. The image segmentation or dense pixel level classification is carried out using a deep neural network architecture named U-Net. Further, morphological operations on the segmented images result in dense measurements of crack geometry, like length, width, area, and crack orientation for individual cracks present in the image. The efficacy and robustness of the proposed method as a viable real-life application was validated by carrying out a laboratory experiment of a four-point bending test on an 8-foot-long concrete beam of which the video is recorded using a camera mounted on a UAV-based, as well as a still ground-based, video camera. Detection, quantification, and localization of damage on a civil infrastructure using the proposed framework can directly be used in the prognosis of the structure's ability to withstand service loads.

8.
Proc Natl Acad Sci U S A ; 113(20): 5558-63, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27140618

RESUMEN

The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

9.
Opt Express ; 26(21): 27326-27338, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30469803

RESUMEN

Light sheet microscopy (LSM) - also known as selective plane illumination microscopy (SPIM) - enables high-speed, volumetric imaging by illuminating a two-dimensional cross-section of a specimen. Typically, this light sheet is created by table-top optics, which limits the ability to miniaturize the overall SPIM system. Replacing this table-top illumination system with miniature, integrated devices would reduce the cost and footprint of SPIM systems. One important element for a miniature SPIM system is a flat, easily manufactured lens that can form a light sheet. Here we investigate planar metallic lenses as the beam shaping element of an integrated SPIM illuminator. Based on finite difference time domain (FDTD) simulations, we find that diffraction from a single slit can create planar illumination with a higher light throughput than zone plate or plasmonic lenses. Metallic slit microlenses also show broadband operation across the entire visible range and are nearly polarization insensitive. Furthermore, compared to meta-lenses based on sub-wavelength-scale diffractive elements, metallic slit lenses have micron-scale features compatible with low-cost photolithographic manufacturing. These features allow us to create inexpensive integrated devices that generate light-sheet illumination comparable to tabletop microscopy systems. Further miniaturization of this type of integrated SPIM illuminators will open new avenues for flat, implantable photonic devices for in vivo biological imaging.

10.
Opt Express ; 25(25): 31096-31110, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29245787

RESUMEN

Three-dimensional imaging using Time-of-flight (ToF) sensors is rapidly gaining widespread adoption in many applications due to their cost effectiveness, simplicity, and compact size. However, the current generation of ToF cameras suffers from low spatial resolution due to physical fabrication limitations. In this paper, we propose CS-ToF, an imaging architecture to achieve high spatial resolution ToF imaging via optical multiplexing and compressive sensing. Our approach is based on the observation that, while depth is non-linearly related to ToF pixel measurements, a phasor representation of captured images results in a linear image formation model. We utilize this property to develop a CS-based technique that is used to recover high resolution 3D images. Based on the proposed architecture, we developed a prototype 1-megapixel compressive ToF camera that achieves as much as 4× improvement in spatial resolution and 3× improvement for natural scenes. We believe that our proposed CS-ToF architecture provides a simple and low-cost solution to improve the spatial resolution of ToF and related sensors.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39190515

RESUMEN

DeepTensor is a computationally efficient framework for low-rank decomposition of matrices and tensors using deep generative networks. We decompose a tensor as the product of low-rank tensor factors (e.g., a matrix as the outer product of two vectors), where each low-rank tensor is generated by a deep network (DN) that is trained in a self-supervised manner to minimize the mean-square approximation error. Our key observation is that the implicit regularization inherent in DNs enables them to capture nonlinear signal structures (e.g., manifolds) that are out of the reach of classical linear methods like the singular value decomposition (SVD) and principal components analysis (PCA). Furthermore, in contrast to the SVD and PCA, whose performance deteriorates when the tensor's entries deviate from additive white Gaussian noise, we demonstrate that the performance of DeepTensor is robust to a wide range of distributions. We validate that DeepTensor is a robust and computationally efficient drop-in replacement for the SVD, PCA, nonnegative matrix factorization (NMF), and similar decompositions by exploring a range of real-world applications, including hyperspectral image denoising, 3D MRI tomography, and image classification. In particular, DeepTensor offers a 6dB signal-to-noise ratio improvement over standard denoising methods for signal corrupted by Poisson noise and learns to decompose 3D tensors 60 times faster than a single DN equipped with 3D convolutions.

12.
Nat Commun ; 15(1): 1271, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341403

RESUMEN

Mesoscopic calcium imaging enables studies of cell-type specific neural activity over large areas. A growing body of literature suggests that neural activity can be different when animals are free to move compared to when they are restrained. Unfortunately, existing systems for imaging calcium dynamics over large areas in non-human primates (NHPs) are table-top devices that require restraint of the animal's head. Here, we demonstrate an imaging device capable of imaging mesoscale calcium activity in a head-unrestrained male non-human primate. We successfully miniaturize our system by replacing lenses with an optical mask and computational algorithms. The resulting lensless microscope can fit comfortably on an NHP, allowing its head to move freely while imaging. We are able to measure orientation columns maps over a 20 mm2 field-of-view in a head-unrestrained macaque. Our work establishes mesoscopic imaging using a lensless microscope as a powerful approach for studying neural activity under more naturalistic conditions.


Asunto(s)
Calcio , Microscopía , Masculino , Animales , Primates
13.
IEEE Trans Biomed Eng ; PP2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106139

RESUMEN

OBJECTIVE: Rapid advances in cuffless blood pressure (BP) monitoring over the last decade have the potential to radically transform clinical care for cardiovascular health. However, due to the large heterogeneity in device design and evaluation, it is difficult to critically and quantitatively evaluate research progress in cuffless BP monitoring. In this two-part manuscript, we seek to provide a principled way of describing and accounting for the heterogeneity in device and study design. METHODS: We first provide an overview of foundational elements and design principles of three critical aspects in the pipeline: 1) sensors and systems, 2) pre-processing and feature extraction, and 3) BP estimation algorithms. Then, we critically analyze the state-of-theart methods via a systematic review. RESULTS: We find a large amount of heterogeneity in study designs making fair comparisons challenging. In addition, many study designs lead to data leakage, and underpowered studies. We suggest a first opencontribution BP estimation benchmark based on existing public datasets for standardized algorithmic comparisons. Second, we observe that BP distribution in the study sample and the time between calibration and test in emerging personalized devices are significant confounders in BP estimation error. We suggest accounting for these using a metric "explained deviation" which is closely related to the coefficient of determination (R2, a frequently used statistic). Finally, we complement this manuscript with a website, https://wearablebp.github.io, containing a bibliography, meta-analysis results, datasets, and benchmarks, providing a timely platform to understand the state-of-the-art devices. CONCLUSION: There is large heterogeneity in device and study design, which should be carefully accounted for when designing, comparing, and contrasting studies. SIGNIFICANCE: Our findings will allow readers to parse out the heterogeneous literature and move toward promising directions for safer and more reliable devices in clinical practice and beyond.

14.
ArXiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38711427

RESUMEN

Recent advancements in machine learning have led to the development of novel medical imaging systems and algorithms that address ill-posed problems. Assessing their trustworthiness and understanding how to deploy them safely at test time remains an important and open problem. In this work, we propose using conformal prediction to compute valid and distribution-free bounds on downstream metrics given reconstructions generated by one algorithm, and retrieve upper/lower bounds and inlier/outlier reconstructions according to the adjusted bounds. Our work offers 1) test time image reconstruction evaluation without ground truth, 2) downstream performance guarantees, 3) meaningful upper/lower bound reconstructions, and 4) meaningful statistical inliers/outlier reconstructions. We demonstrate our method on post-mastectomy radiotherapy planning using 3D breast CT reconstructions, and show 1) that metric-guided bounds have valid coverage for downstream metrics while conventional pixel-wise bounds do not and 2) anatomical differences of upper/lower bounds between metric-guided and pixel-wise methods. Our work paves way for more meaningful and trustworthy test-time evaluation of medical image reconstructions. Code available at https://github.com/matthewyccheung/conformal-metric.

15.
Nat Commun ; 15(1): 2935, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580633

RESUMEN

Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings.


Asunto(s)
Aprendizaje Profundo , Microscopía , Colorantes Fluorescentes , Hematoxilina , Eosina Amarillenta-(YS)
16.
Nat Commun ; 15(1): 1662, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395983

RESUMEN

Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12 µm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.

17.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38550347

RESUMEN

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

18.
Biomed Opt Express ; 14(8): 4037-4051, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37799697

RESUMEN

Traditional miniaturized fluorescence microscopes are critical tools for modern biology. Invariably, they struggle to simultaneously image with a high spatial resolution and a large field of view (FOV). Lensless microscopes offer a solution to this limitation. However, real-time visualization of samples is not possible with lensless imaging, as image reconstruction can take minutes to complete. This poses a challenge for usability, as real-time visualization is a crucial feature that assists users in identifying and locating the imaging target. The issue is particularly pronounced in lensless microscopes that operate at close imaging distances. Imaging at close distances requires shift-varying deconvolution to account for the variation of the point spread function (PSF) across the FOV. Here, we present a lensless microscope that achieves real-time image reconstruction by eliminating the use of an iterative reconstruction algorithm. The neural network-based reconstruction method we show here, achieves more than 10000 times increase in reconstruction speed compared to iterative reconstruction. The increased reconstruction speed allows us to visualize the results of our lensless microscope at more than 25 frames per second (fps), while achieving better than 7 µm resolution over a FOV of 10 mm2. This ability to reconstruct and visualize samples in real-time empowers a more user-friendly interaction with lensless microscopes. The users are able to use these microscopes much like they currently do with conventional microscopes.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37561613

RESUMEN

Using millimeter wave (mmWave) signals for imaging has an important advantage in that they can penetrate through poor environmental conditions such as fog, dust, and smoke that severely degrade optical-based imaging systems. However, mmWave radars, contrary to cameras and LiDARs, suffer from low angular resolution because of small physical apertures and conventional signal processing techniques. Sparse radar imaging, on the other hand, can increase the aperture size while minimizing the power consumption and read out bandwidth. This paper presents CoIR, an analysis by synthesis method that leverages the implicit neural network bias in convolutional decoders and compressed sensing to perform high accuracy sparse radar imaging. The proposed system is data set-agnostic and does not require any auxiliary sensors for training or testing. We introduce a sparse array design that allows for a 5.5× reduction in the number of antenna elements needed compared to conventional MIMO array designs. We demonstrate our system's improved imaging performance over standard mmWave radars and other competitive untrained methods on both simulated and experimental mmWave radar data.

20.
Biomed Opt Express ; 14(10): 5316-5337, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37854569

RESUMEN

Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle contrast imaging to provide deep tissue blood flow information. However, the current speckle contrast tomography techniques suffer from poor spatial resolution and involve both computation and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the skin. Our approach replaces the traditional forward model using diffuse approximations with Monte-Carlo simulations-based convolutional forward model, which enables us to develop an improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the reflection geometry. We also conduct human experiments to demonstrate that our approach can detect reduced flow in major blood vessels during vascular occlusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA