Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Acc Chem Res ; 57(2): 188-197, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38156949

RESUMEN

ConspectusCarbon capture, utilization, and storage have been identified as key technologies to decarbonize the energy and industrial sectors. Although postcombustion CO2 capture by absorption in aqueous amines is a mature technology, the required high regeneration energy, losses due to degradation and evaporation, and corrosion carry a high economic cost, precluding this technology to be used today at the scale required to mitigate climate change. Solid adsorbent-based systems with high CO2 capacities, high selectivity, and lower regeneration energy are becoming an attractive alternative for this purpose. Conscious of this opportunity, the search for optimal adsorbents for the capture of CO2 has become an urgent task. To accurately assess the performance of CO2 separation by adsorption at the needed scale, adsorbents should be synthesized and fully characterized under the required operating conditions, and the proper design and simulation of the process should be implemented along with techno-economic and environmental assessments. Several works have examined pure CO2 single-component adsorption or binary mixtures of CO2 with nitrogen for different families of adsorbents, primarily addressing their CO2 adsorption capacity and selectivity; however, very limited data is available under other conditions and/or with impurities, mainly due to the intensive experimental (modeling) efforts required for the large number of adsorbents to be studied, posing a challenge for their assessment under the needed conditions. In this regard, molecular simulations can be employed in synergy with experiments, reliably generating missing adsorption properties of mixtures while providing understanding at the molecular level of the mechanism of the adsorption process.This Account provides an outlook on strategies used for the rational design of materials for CO2 capture from different sources from the understanding of the adsorption mechanism at the molecular level. We illustrate with practical examples from our work and others' work how molecular simulations can be reliably used to link the molecular knowledge of novel adsorbents for which limited data exist for CO2 capture adsorption processes. Molecular simulation results of different adsorbents, including MOFs, zeolites, and carbon-based and silica-based materials, are discussed, focusing on understanding the role of physical and chemical adsorption obtained from simulations and quantifying the impact of impurities in the performance of the materials. Furthermore, simulation results can be used for screening adsorbents from basic key performance indicators, such as cycling the working capacity, selectivity, and energy requirement, or for feeding detailed dynamic models to assess their performance in swing adsorption processes on the industrial scale, additionally including monetized performance indicators such as operating expenses, equipment sizes, and compression cost. Moreover, we highlight the role of molecular simulations in guiding strategies for improving the performance of these materials by functionalization with amines or creating hybrid solid materials. We show how integrating models at different scales provides a robust and reliable assessment of the performance of the adsorbent materials under the required industrial conditions, rationally guiding the search for best performers. Trends in additional computational resources that can be used, including machine learning, and perspectives on practical requirements for leveraging CO2 capture adsorption technologies on the needed scale are also discussed.

2.
Soft Matter ; 17(20): 5183-5196, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33942825

RESUMEN

Poly(oxyethylene) alkyl ethers, usually denoted by CiEj surfactants, exhibit a rich phase behavior in water, self-assembling to form a variety of 3-D structures with a controllable morphology that find multiple applications across different industrial segments. Hence, being able to describe and understand the effect of molecular structure on the phase behavior of these systems is highly relevant for the efficient design of new materials and their applications. Considering the promising results obtained over the last decade using the MARTINI model to describe ethylene-oxide containing compounds, an extensive assessment of the ability of such a model to describe the phase behavior of CiEj in water was carried out and results are presented here. Given the overall poor temperature transferability of the MARTINI model, mostly due to the lack of an accurate representation of hydrogen bonding, simulations were carried out at a single temperature of 333 K, where most phases are expected to occur according to experiments. Different chain lengths of both the hydrophobic and hydrophilic moieties, spanning a wide range of hydrophilic-lipophilic balance values, were investigated and the phase diagrams of various CiEj surfactants explored over a wide concentration range. The model was able to satisfactorily describe the effect of surfactant structure and concentration on mesophase formation. The stability and dimensions of the obtained phases, and the prediction of some unique features such as the characterization of a singular lamellar phase are presented. The results obtained in this work highlight both the predictive ability and the transferability of the MARTINI forcefield in the description of such systems. Moreover, the model was shown to provide adequate descriptions of the micellar phase in terms of micelle dimensions, critical micelle concentration, and average aggregation number.

3.
J Chem Phys ; 154(16): 164503, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33940796

RESUMEN

In this work, polar soft-Statistical Associating Fluid Theory (SAFT) was used in a systematic manner to quantify the influence of polar interactions on the phase equilibria, interfacial, and excess properties of binary mixtures. The theory was first validated with available molecular simulation data and then used to isolate the effect of polar interactions on the thermodynamic behavior of the mixtures by fixing the polar moment of one component while changing the polar moment of the second component from non-polar to either highly dipolar or quadrupolar, examining 15 different binary mixtures. It was determined that the type and magnitude of polar interactions have direct implications on the vapor-liquid equilibria (VLE), resulting in azeotropy for systems of either dipolar or quadrupolar fluids when mixed with non-polar or low polar strength fluids, while increasing the polar strength of one component shifts the VLE to be more ideal. Additionally, excess properties and interfacial properties such as interfacial tension, density profiles, and relative adsorption at the interface were also examined, establishing distinct enrichment in the case of mixtures with highly quadrupolar fluids. Finally, polar soft-SAFT was applied to describe the thermodynamic behavior of binary mixtures of experimental systems exhibiting various intermolecular interactions (non-polar and polar), not only demonstrating high accuracy and robustness through agreement with experimental data but also providing insights into the effect of polarity on the interfacial properties of the studied mixtures. This work proves the value of having an accurate theory for isolating the effect of polarity, especially for the design of ad hoc polar solvents.

4.
Phys Chem Chem Phys ; 22(23): 13171-13191, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32497165

RESUMEN

The consideration of polar interactions is of vital importance for the development of predictive and accurate thermodynamic models for polar fluids, as they govern most of their thermodynamic properties, making them highly non-ideal fluids. We present here for the first time the extension of the soft-SAFT equation of state (EoS), named polar soft-SAFT, to explicitly model intermolecular polar interactions (dipolar and quadrupolar), using the approach of Jog and Chapman (P. K. Jog and W. G. Chapman, Mol. Phys., 1999, 97(3), 307-319). The theory is first validated using molecular simulation data for a wide range of polar model systems including Stockmayer fluids, LJ dimers with dipole, and quadrupolar LJ fluids, for a wide range of thermophysical properties such as liquid density, vapour pressure, surface tension and heat capacities. Excellent agreement between polar soft-SAFT and simulation data has been obtained for all examined fluids and properties for systems exhibiting low to intermediate polar strength, while the agreement deteriorates at very high polar strengths. Once validated with simulations, the equation has been applied to calculate vapour-liquid equilibria (VLE), surface tension and second-order derivative properties of systems such as 2-ketone and methane chloride families as showcases for dipolar fluids and the benzene family for quadrupolar fluids, finding very good agreement with experimental data. In order to preserve the robustness of the model, the experimental value of the dipole or quadrupole was used in these calculations, while the additional parameter for the polar fluids was set a priori rather than included in the fitting procedure. The excellent agreement found with simulations and experiments empowers the soft-SAFT equation with new capabilities for the development of robust and accurate molecular models of polar fluids of industrial relevance.

5.
Phys Chem Chem Phys ; 21(39): 22092-22102, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31566199

RESUMEN

Understanding the phase behavior and accurately predicting the thermophysical, interfacial and transport properties of low global warming, fourth generation refrigerants is essential for designing and evaluating refrigeration cycle performances and determining the optimal refrigerant or blends for a selected application. In this paper, we have used molecular dynamics simulations to study the vapour-liquid interface of fourth generation refrigerants including 2,3,3,3-tetrafluoropropene (HFO-1234yf), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)), methylpropane (isobutane, HC-600a) and binary mixtures containing HFO-1234yf + HC-600a and HFO-1234ze(E) + HC-600a as new alternatives to third generation refrigerants. We provide predictions on their vapour-liquid equilibrium and interfacial properties (such as density profiles, interface thickness and surface tension) derived from the simulations. The results are compared to the experimental data, when available, and calculations made using the statistical associating fluid theory (SAFT). It is found that the mixtures of HFO-1234yf + HC-600a and HFO-1234ze(E) + HC-600a present azeotropic and aneotropic behavior. Molecular dynamics simulations corroborate the aneotrope already predicted by SAFT for these mixtures, highlighting the robustness of using molecular modeling techniques to investigate the performance of low GWP refrigerants and their blends as complementary tools to obtain the required data for the optimization of these systems. Insights into the molecular behavior at compositions before the aneotrope, at the aneotrope and after the aneotrope are provided based on radial distribution functions. It is shown that HC-600a and HFO molecules tend to stay closer to the same type of molecules and accumulate at different sides of the liquid region to act like pure components at the aneotropic composition.

6.
Phys Chem Chem Phys ; 21(12): 6362-6380, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30838371

RESUMEN

Fluorinated ionic liquids (FILs) are a unique family of ionic liquids with remarkable properties, including the formation of three nano-segregated domains, which are very attractive for several emerging applications. However, the amount of available experimental data to fully characterize them is very scarce. We propose a systematic methodology to build FIL transferable molecular models within the soft-SAFT framework to describe the behaviour of FILs and their mixtures. A total of 38 FILs (pyridinium- and imidazolium-based FILs conjugated with fluorinated anions such as [N(CF3SO2)2]-, [CF3SO3]-, [CF3CO2]-, [C4F9SO3]- and [C4F9CO2]-) have been modelled for this purpose using available data, paying special attention to the physical meaning of the parameters. The models are used to obtain molecular insights into the influence of the anion and cation molecular structures on the thermophysical properties of the FILs. It is concluded that the anion and anion fluorination are the leading features in the thermophysical properties investigated, as captured by soft-SAFT. Models for three FILs not included in the parametrization study were built from the transferable parameters, in excellent agreement with experimental data, underlining the robustness of the soft-SAFT approach. The methodology presented here allows a direct connection between the molecular characteristics of the FILs, the influence on their behaviour, and how this can be captured by a molecular-based equation of state. The procedure allows assembling FIL models with high predictive capabilities in an intuitive way regarding the process of parametrization from the molecular structure, allowing us to characterize their thermophysical behaviour where limited experimental data are available.

7.
Phys Chem Chem Phys ; 21(27): 15046-15061, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31241081

RESUMEN

Given the recent boom of applications for deep eutectic solvents (DES), there is a need for robust and accurate thermodynamic models that are able to describe them. Recent works have used molecular-based equations of state, derived from the Statistical Associating Fluid Theory (SAFT), to model DES due to their ability to explicitly account for hydrogen bonding, which is thought to govern the formation of a DES. However, the application of these association models to DES is a non-trivial task, because pure fluid data for several DES precursors are not available to be used in the model parameterization. The alternative parameterization procedures currently employed have evident flaws including the use of oversimplified association schemes, lack of transferability, inability to provide fundamental solid-liquid equilibrium data, and an overall poor accuracy. This work highlights the disadvantages of the current approaches while providing a novel methodology for the development of coarse-grained models applicable to DES. By proposing a more realistic association scheme and regressing the model parameters from experimental data that can be easily measured for a representative DES, a new coarse-grained model for [Ch]Cl, the most used DES precursor, was developed for soft-SAFT. The good performance and versatility of the new model were then successfully demonstrated through the modelling of a wide variety of [Ch]Cl-based DES, providing accurate descriptions of densities, vapor-liquid equilibria and solid-liquid equilibria data, for both binary and ternary systems. Furthermore, the novel approach can easily be applied to other SAFT-type models and extended to other solid DES precursors such as urea.

8.
Chemphyschem ; 18(15): 2012-2023, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28474438

RESUMEN

Fluorinated ionic liquids (FILs) exhibit complex molecular behavior, where three different nanodomains (polar, hydrogenated nonpolar, and fluorinated nonpolar) have been identified by molecular simulations. Given the high number of possible anion/cation combinations, a theoretical tool able to describe the thermophysical properties of these compounds in a systematic, rapid, and accurate manner is highly desirable. We present here a combined experimental-theoretical methodology to obtain the phase, interface, and transport properties of the 1-alkyl-3-methylimidazolium perfluorobutanesulfonate ([Cn C1 Im][C4 F9 SO3 ]) family. In addition to providing new experimental data, an extended version of the Statistical Associating Fluid Theory (soft-SAFT) is used to describe the physicochemical behavior of the [Cn C1 Im][C4 F9 SO3 ] family. A mesoscopic molecular model is built based on the analysis of the chemical structures of these FILs, and supported by quantum chemical calculations to study the charge distribution of the anion, where only the basic physical features are considered. The resulting molecular parameters are related to the molecular weight, providing the basis for thermophysical predictions of similar compounds. The theory is also able to predict the minimum in the surface tension versus the length of the hydrogenated alkyl chain, experimentally found at n=8. The viscosity parameters are also in agreement with the free-volume calculations obtained from experiments.

9.
Langmuir ; 33(42): 11146-11155, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28764332

RESUMEN

Adsorption on activated carbons of five pharmaceutical molecules (ibuprofen, diclofenac, naproxen, paracetamol, and amoxicillin) in aqueous mixtures has been investigated by molecular simulations using the Grand Canonical Monte Carlo (GCMC) method. A virtual nanoporous carbon model based on polyaromatic units with defects and polar-oxygenated sites was used for this purpose. The simulation results show excellent agreement with available experimental data. The adsorption capacities of the carbons for the five drugs were quite different and were linked, essentially, to their molecular dimensions and atom affinities. The uptake behavior follows the trend PRM > DCF, NPX > IBP > AMX in all the studied structures. This work is a further step in order to describe macroscopic adsorption performance of activated carbons in drug removal applications.

10.
Phys Chem Chem Phys ; 19(13): 8977-8988, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28300232

RESUMEN

The use of hydrofluorocarbons (HFCs) as alternative non-ozone depleting refrigerants for chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) has grown during the last couple of decades. Owing to their considerable global warming potential, a global deal has been reached recently to limit the production and consumption of HFCs. For rational design of new refrigerants that are environmentally friendlier, the thermodynamics of current ones need to be well understood first. In this work, we examine the phase behavior of azeotropic refrigerants obtained by mixing HFCs with normal alkanes. The vapor-liquid equilibria (VLE) of these binary systems exhibit positive deviation from Raoult's law in the bulk, and a negative deviation from surface ideality (aneotrope) at the interface. The phase equilibria, second order thermodynamic derivative properties and interfacial properties of these complex systems were studied here using a modified version of the Statistical Associating Fluid Theory (SAFT) combined with Density Gradient Theory (DGT). The model was able to accurately capture the azeotropic nature of the phase equilibria and predict their composition and pressure at temperatures where experimental data are limited. In addition, accurate descriptions of the interfacial tensions were also obtained when compared with available experimental data, predicting the minimum found in surface tension as a function of composition. The molecular-based theory allowed the calculation of interfacial properties for which there is no experimental data available yet. Predictions show that the aneotrope occurs at a lower HFC composition for R-152a and R-134a systems in comparison to R-143a and R-125 systems. According to the calculated density profiles, HFC molecules appear to be preferentially adsorbed at the interface causing the surface tension of the n-alkane rich phase to decrease at low HFC concentrations. At high HFC concentrations, the phenomenon is inverted and n-alkane molecules are preferentially adsorbed causing the surface tension of the HFC rich phase to decrease. Consequently, the aneotrope point can be defined as the state at which the surface activity of both molecules is identical, or the relative adsorption of one component versus the other at the interface becomes zero.

11.
Langmuir ; 29(1): 199-206, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23140219

RESUMEN

The underlying mechanism of the adsorption process in functionalized materials is not yet fully understood. This incomplete understanding limits the possibility of designing optimal adsorbent materials for different applications. Hence, the availability of complementary methods to advance this field is of great interest. We present here results concerning the adsorption of CO(2) in amine-functionalized silica materials by Monte Carlo simulations, providing new insights into the capture process. Two different mechanisms of functionalization are compared: impregnation (a physical mixture of the amine and the support) and grafting (a chemical bond is formed between the amine and the support). We evaluate in this work a model of MCM-41 for N(2) and CO(2) adsorption with varying degrees of density of the functionalized chains. The results indicate that the mobility of the impregnated chains allows the creation of a network of microcavities, which enhance the low-pressure adsorption capabilities of these materials. Molecular simulations allow us to study in detail the conformational changes in the functionalized chains during the adsorption process. Materials functionalized densely by grafting undergo a change in the preferential orientation of the chains, which allows the adsorption of additional molecules close to the surface of the support. The adsorption of gas molecules close to the pore surface is usually the most energetically favorable configuration; however, for densely grafted materials the adsorption close to the surface occurs only at pressures large enough to provide energy to displace the functionalized chains.

12.
ACS Appl Mater Interfaces ; 15(47): 54432-54445, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37968934

RESUMEN

The commercialization of ultrahigh capacity lithium-oxygen (Li-O2) batteries is highly dependent on the cathode architecture, and a better understanding of its role in species transport and solid discharge product (i.e., Li2O2) formation is critical to improving the discharge capacity. Tailoring the pore size distribution in the cathode structure can enhance the ion mobility and increase the number of reaction sites to improve the formation of solid Li2O2. In this work, the potential of hierarchical zeolite-templated carbon (ZTC) structures as novel electrodes for Li-O2 batteries was investigated by using reactive force field molecular dynamics simulation (reaxFF-MD). Initially, 47 microporous zeolite-templated carbon morphologies were screened based on microporosity and specific area. Among them, four structures (i.e., RHO-, BEA-, MFI-, and FAU-ZTCs) were selected for further investigation including hierarchical features in their structures. Discharge product cluster analysis, self-diffusivities, and density number profiles of Li+, O2, and dimethyl sulfoxide (DMSO) electrolyte were obtained to find that the RHO-type ZTC exhibited enhanced mass transfer compared to conventional microporous ZTC (approximately 31% for O2, 44% for Li+, and 91% for DMSO) electrodes. This is due to the promoted formation of small-sized product clusters, creating more accessible sites for oxygen reduction reaction and mass transport. These findings indicate how hierarchical ZTC electrodes with micro- and mesopores can enhance the discharge performance of aprotic Li-O2 batteries, providing molecular insights into the underlying phenomena.

13.
Ind Eng Chem Res ; 61(21): 7414-7429, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35673400

RESUMEN

We present here a novel integrated approach employing machine learning algorithms for predicting thermophysical properties of fluids. The approach allows obtaining molecular parameters to be used in the polar soft-statistical associating fluid theory (SAFT) equation of state using molecular descriptors obtained from the conductor-like screening model for real solvents (COSMO-RS). The procedure is used for modeling 18 refrigerants including hydrofluorocarbons, hydrofluoroolefins, and hydrochlorofluoroolefins. The training dataset included six inputs obtained from COSMO-RS and five outputs from polar soft-SAFT parameters, with the accurate algorithm training ensured by its high statistical accuracy. The predicted molecular parameters were used in polar soft-SAFT for evaluating the thermophysical properties of the refrigerants such as density, vapor pressure, heat capacity, enthalpy of vaporization, and speed of sound. Predictions provided a good level of accuracy (AADs = 1.3-10.5%) compared to experimental data, and within a similar level of accuracy using parameters obtained from standard fitting procedures. Moreover, the predicted parameters provided a comparable level of predictive accuracy to parameters obtained from standard procedure when extended to modeling selected binary mixtures. The proposed approach enables bridging the gap in the data of thermodynamic properties of low global warming potential refrigerants, which hinders their technical evaluation and hence their final application.

14.
ACS Omega ; 7(26): 22303-22316, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35811878

RESUMEN

This study focuses on developing an adhesive and cohesive molecular modeling approach to study the properties of silica surfaces and quartz cement interfaces. Atomic models were created based on reported silica surface configurations and quartz cement. For the first time, molecular dynamics (MD) simulations were conducted to investigate the cohesion and adhesion properties by predicting the interaction energy and the adhesion pressure at the cement and silica surface interface. Results show that the adhesion pressure depends on the area density (per nm2) and degree of ionization, and van der Waals forces are the major contributor to the interactions between the cement and silica surfaces. Moreover, it is shown that adhesion pressure could be the actual rock failure mechanism in contrast to the reported literature which considers cohesion as the failure mechanism. The bonding energy factors for both "dry" and "wet" conditions were used to predict the water effect on the adhesion pressure at the cement-surface interface, revealing that H2O can cause a significant reduction in adhesion pressure. In addition, relating the adhesion pressure to the dimensionless area ratio of the cement to silica surfaces resulted in a good correlation that could be used to distribute the adhesion pressure in a rock system based on the area of interactions between the cement and the surface. This study shows that MD simulations can be used to understand the chemomechanics relationship fundamental of cement-surfaces of a reservoir rock at a molecular/atomic level and to predict the rock mechanical failure for sandstones, limestones, and shales.

15.
Sci Total Environ ; 810: 151720, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861307

RESUMEN

Carbon dioxide emissions and their sharply rising effect on global warming have encouraged research efforts to develop efficient technologies and materials for CO2 capture. Post-combustion CO2 capture by adsorption using solid materials is considered an attractive technology to achieve this goal. Templated materials, such as Zeolite Templated-Carbons and MOF-Derived Carbons, are considered as the next-generation carbon adsorbent materials, owing to their outstanding textural properties (high surface areas of ca. 4000 m2 g-1 and micropore volumes of ca. 1.7 cm3 g-1) and their versatility for surface functionalization. These materials have demonstrated remarkable CO2 adsorption capacities and CO2/N2 selectivities up to ca. 5 mmol g-1 and 100, respectively, at 298 K and 1 bar, and low isosteric heat of adsorption at zero coverage of ca. 12 kJ mol-1. Herein, a review of the advances in preparation of ZTCs and MDCs for CO2 capture is presented, followed by a critical analysis of the effects of textural properties and surface functionality on CO2 adsorption, including CO2 uptake, CO2/N2 selectivity, and isosteric heat of adsorption. This analysis led to the introduction of a Vmicrox N-content factor to evaluate the interplay between N-content and textural properties to maximize the CO2 uptake. Despite their promising performance in CO2 uptake, further testing using mixtures and impurities, and studies on adsorbent regeneration, and cyclic operation are desirable to demonstrate the stability of the MDCs and ZTCs for large scale processes. In addition, advances in scale-up syntheses and their economics are needed.


Asunto(s)
Dióxido de Carbono , Calentamiento Global , Adsorción
16.
Artículo en Inglés | MEDLINE | ID: mdl-35820019

RESUMEN

Doped ceria-based metal oxides are widely used as supports and stand-alone catalysts in reactions where CO2 is involved. Thus, it is important to understand how to tailor their CO2 adsorption behavior. In this work, steering the CO2 activation behavior of Ce-La-Cu-O ternary oxide surfaces through the combined effect of chemical and mechanical strain was thoroughly examined using both experimental and ab initio modeling approaches. Doping with aliovalent metal cations (La3+ or La3+/Cu2+) and post-synthetic ball milling were considered as the origin of the chemical and mechanical strain of CeO2, respectively. Experimentally, microwave-assisted reflux-prepared Ce-La-Cu-O ternary oxides were imposed into mechanical forces to tune the structure, redox ability, defects, and CO2 surface adsorption properties; the latter were used as key descriptors. The purpose was to decouple the combined effect of the chemical strain (εC) and mechanical strain (εM) on the modification of the Ce-La-Cu-O surface reactivity toward CO2 activation. During the ab initio calculations, the stability (energy of formation, EOvf) of different configurations of oxygen vacant sites (Ov) was assessed under biaxial tensile strain (ε > 0) and compressive strain (ε < 0), whereas the CO2-philicity of the surface was assessed at different levels of the imposed mechanical strain. The EOvf values were found to decrease with increasing tensile strain. The Ce-La-Cu-O(111) surface exhibited the lowest EOvf values for the single subsurface sites, implying that Ov may occur spontaneously upon Cu addition. The mobility of the surface and bulk oxygen anions in the lattice contributing to the Ov population was measured using 16O/18O transient isothermal isotopic exchange experiments; the maximum in the dynamic rate of 16O18O formation, Rmax(16O18O), was 13.1 and 8.5 µmol g-1 s-1 for pristine (chemically strained) and dry ball-milled (chemically and mechanically strained) oxides, respectively. The CO2 activation pathway (redox vs associative) was experimentally probed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was demonstrated that the mechanical strain increased up to 6 times the CO2 adsorption sites, though reducing their thermal stability. This result supports the mechanical actuation of the "carbonate"-bound species; the latter was in agreement with the density functional theory (DFT)-calculated C-O bond lengths and O-C-O angles. Ab initio studies shed light on the CO2 adsorption energy (Eads), suggesting a covalent bonding which is enhanced in the presence of doping and under tensile strain. Bader charge analysis probed the adsorbate/surface charge distribution and illustrated that CO2 interacts with the dual sites (acidic and basic ones) on the surface, leading to the formation of bidentate carbonate species. Density of states (DOS) studies revealed a significant Eg drop in the presence of double Ov and compressive strain, a finding with design implications in covalent type of interactions. To bridge this study with industrially important catalytic applications, Ni-supported catalysts were prepared using pristine and ball-milled oxides and evaluated for the dry reforming of methane reaction. Ball milling was found to induce modification of the metal-support interface and Ni catalyst reducibility, thus leading to an increase in the CH4 and CO2 conversions. This study opens new possibilities to manipulate the CO2 activation for a portfolio of heterogeneous reactions.

17.
Phys Chem Chem Phys ; 13(35): 16063-70, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21822505

RESUMEN

In this study we attempt to investigate the potential use of two zeolite template carbon (ZTC), EMT-ZTC and FAU-ZTC, to capture CO(2) at room temperature. We report their high pressure CO(2) adsorption isotherms (273 K) that show for FAU-ZTC the highest carbon capture capacity among published carbonaceous materials and competitive data with the best organic and inorganic adsorbing frameworks ever-known (zeolites and mesoporous silicas, COFs and MOFs). The importance of these results is discussed in light of mitigation of CO(2) emissions. In addition to these new experimental CO(2) adsorption data, we also present new insight into the adsorption process of the two structures by Monte Carlo simulations: we propose that two separate effects are responsible for the apparent similarity of the adsorption behaviour of the two structures: (i) pore blocking occurring on EMT-ZTC, and (ii) the change of the carbon polarizability due to the extreme curvature of FAU-ZTC.

18.
J Chem Phys ; 134(15): 154102, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21513370

RESUMEN

An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the ß critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.

19.
Sci Total Environ ; 790: 148081, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34091328

RESUMEN

There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.


Asunto(s)
Dióxido de Carbono , Metano , Catálisis , Industrias , Metanol
20.
ACS Sustain Chem Eng ; 9(50): 17034-17048, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34956740

RESUMEN

The use of hydrofluorocarbons (HFCs) as an alternative for refrigeration units has grown over the past decades as a replacement to chlorofluorocarbons (CFCs), banned by the Montreal's Protocol because of their effect on the depletion of the ozone layer. However, HFCs are known to be greenhouse gases with considerable global warming potential (GWP), thousands of times higher than carbon dioxide. The Kigali Amendment to the Montreal Protocol has promoted an active area of research toward the development of low GWP refrigerants to replace the ones in current use, and it is expected to significantly contribute to the Paris Agreement by avoiding nearly half a degree Celsius of temperature increase by the end of this century. We present here a molecular-based evaluation tool aiming at finding optimal refrigerants with the requirements imposed by current environmental legislations in order to mitigate their impact on climate change. The proposed approach relies on the robust polar soft-SAFT equation of state to predict thermodynamic properties required for their technical evaluation at conditions relevant for cooling applications. Additionally, the thermodynamic model integrated with technical criteria enable the search for compatibility of currently used third generation compounds with more eco-friendly refrigerants as drop-in replacements. The criteria include volumetric cooling capacity, coefficient of performance, and other physicochemical properties with direct impact on the technical performance of the cooling cycle. As such, R1123, R1224yd(Z), R1234ze(E), and R1225ye(Z) demonstrate high aptitude toward replacing R134a, R32, R152a, and R245fa with minimal retrofitting to the existing system. The current modeling platform for the rapid screening of emerging refrigerants offers a guide for future efforts on the design of alternative working fluids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA