Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27733647

RESUMEN

Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE: Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides.


Asunto(s)
Hemaglutininas Virales/inmunología , Vacuna Antisarampión/administración & dosificación , Virus del Sarampión/efectos de los fármacos , Sarampión/prevención & control , Nanopartículas/administración & dosificación , Péptidos/inmunología , Proteínas Virales de Fusión/inmunología , Administración Intranasal , Secuencia de Aminoácidos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Colesterol/química , Femenino , Semivida , Hemaglutininas Virales/química , Humanos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Masculino , Sarampión/inmunología , Sarampión/mortalidad , Sarampión/virología , Vacuna Antisarampión/síntesis química , Virus del Sarampión/química , Virus del Sarampión/inmunología , Nanopartículas/química , Péptidos/síntesis química , Sigmodontinae , Análisis de Supervivencia , Proteínas Virales de Fusión/química , Internalización del Virus/efectos de los fármacos
2.
Bioconjug Chem ; 29(10): 3362-3376, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169965

RESUMEN

The impact of influenza virus infection is felt each year on a global scale when approximately 5-10% of adults and 20-30% of children globally are infected. While vaccination is the primary strategy for influenza prevention, there are a number of likely scenarios for which vaccination is inadequate, making the development of effective antiviral agents of utmost importance. Anti-influenza treatments with innovative mechanisms of action are critical in the face of emerging viral resistance to the existing drugs. These new antiviral agents are urgently needed to address future epidemic (or pandemic) influenza and are critical for the immune-compromised cohort who cannot be vaccinated. We have previously shown that lipid tagged peptides derived from the C-terminal region of influenza hemagglutinin (HA) were effective influenza fusion inhibitors. In this study, we modified the influenza fusion inhibitors by adding a cell penetrating peptide sequence to promote intracellular targeting. These fusion-inhibiting peptides self-assemble into ∼15-30 nm nanoparticles (NPs), target relevant infectious tissues in vivo, and reduce viral infectivity upon interaction with the cell membrane. Overall, our data show that the CPP and the lipid moiety are both required for efficient biodistribution, fusion inhibition, and efficacy in vivo.


Asunto(s)
Antivirales/farmacología , Péptidos de Penetración Celular/farmacología , Virus de la Influenza A/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Administración Intranasal , Secuencia de Aminoácidos , Animales , Antivirales/administración & dosificación , Antivirales/química , Antivirales/farmacocinética , Disponibilidad Biológica , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Endocitosis , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Huésped Inmunocomprometido , Nanopartículas/química , Sigmodontinae , Proteínas Virales/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química
3.
J Viral Hepat ; 15(5): 346-56, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18179451

RESUMEN

We have analysed and identified different membrane-active regions of the Hepatitis C virus (HCV) core protein by observing the effect of 18-mer core-derived peptide libraries from two HCV strains on the integrity of different membrane model systems. In addition, we have studied the secondary structure of specific membrane-interacting peptides from the HCV core protein, both in aqueous solution and in the presence of model membrane systems. Our results show that the HCV core protein region comprising the C-terminus of domain 1 and the N-terminus of domain 2 seems to be the most active in membrane interaction, although a role in protein-protein interaction cannot be excluded. Significantly, the secondary structure of nearly all the assayed peptides changes in the presence of model membranes. These sequences most probably play a relevant part in the biological action of HCV in lipid interaction. Furthermore, these membranotropic regions could be envisaged as new possible targets, as inhibition of its interaction with the membrane could potentially lead to new vaccine strategies.


Asunto(s)
Hepacivirus/fisiología , Metabolismo de los Lípidos , Membranas/metabolismo , Proteínas del Núcleo Viral/metabolismo , Sitios de Unión , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas del Núcleo Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA