Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 22(11): e52476, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34558777

RESUMEN

Changing environmental cues lead to the adjustment of cellular physiology by phosphorylation signaling networks that typically center around kinases as active effectors and phosphatases as antagonistic elements. Here, we report a signaling mechanism that reverses this principle. Using the hyperosmotic stress response in Saccharomyces cerevisiae as a model system, we find that a phosphatase-driven mechanism causes induction of phosphorylation. The key activating step that triggers this phospho-proteomic response is the Endosulfine-mediated inhibition of protein phosphatase 2A-Cdc55 (PP2ACdc55 ), while we do not observe concurrent kinase activation. In fact, many of the stress-induced phosphorylation sites appear to be direct substrates of the phosphatase, rendering PP2ACdc55 the main downstream effector of a signaling response that operates in parallel and independent of the well-established kinase-centric stress signaling pathways. This response affects multiple cellular processes and is required for stress survival. Our results demonstrate how a phosphatase can assume the role of active downstream effectors during signaling and allow re-evaluating the impact of phosphatases on shaping the phosphorylome.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proteomics ; 12(19-20): 3030-43, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22890988

RESUMEN

Global phosphoproteomic studies based on MS have generated qualitative and quantitative data describing protein phosphorylation events in various biological systems. Since high-throughput data for protein modifications are inherently incomplete, we developed a strategy to extend and validate such primary datasets. We selected interesting protein candidates from a global screen in yeast and employed a modified histidine biotin tag that allows tandem affinity purifications of our targets under denaturing conditions. Products in question can be digested directly from affinity resins and phosphopeptides can be further enriched via TiO(2) before MS analysis. Our robust protocol can be amended for SILAC as well as iTRAQ quantifications or label-free approaches based on selective reaction monitoring, allowing completion of the phosphorylation pattern in a first step, followed by a detailed analysis of the phosphorylation kinetics. We exemplify the value of such a strategy by an in-depth analysis of Pan1, a highly phosphorylated factor involved in early steps of endocytosis. The study of Pan1 under osmotic stress conditions in different mutant backgrounds allowed us to differentiate between mitogen-activated protein kinase Hog1 driven and Hog1 independent stress responses.


Asunto(s)
Proteínas Fúngicas/metabolismo , Espectrometría de Masas/métodos , Fosfoproteínas/metabolismo , Levaduras/metabolismo , Secuencia de Aminoácidos , Endocitosis , Proteínas Fúngicas/análisis , Proteínas Fúngicas/química , Marcaje Isotópico , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/análisis , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/análisis , Fosfoproteínas/química , Fosforilación , Proteómica/métodos , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico
3.
J Fungi (Basel) ; 7(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34682295

RESUMEN

The cell wall integrity (CWI) signaling pathway is best known for its roles in cell wall biogenesis. However, it is also thought to participate in the response to genotoxic stress. The stress-activated protein kinase Mpk1 (Slt2, is activated by DNA damaging agents through an intracellular mechanism that does not involve the activation of upstream components of the CWI pathway. Additional observations suggest that protein kinase C (Pkc1), the top kinase in the CWI signaling cascade, also has a role in the response to genotoxic stress that is independent of its recognized function in the activation of Mpk1. Pkc1 undergoes hyper-phosphorylation specifically in response to genotoxic stress; we have found that this requires the DNA damage checkpoint kinases Mec1 (Mitosis Entry Checkpoint) and Tel1 (TELomere maintenance), but not their effector kinases. We demonstrate that the casein kinase 1 (CK1) ortholog, Hrr25 (HO and Radiation Repair), previously implicated in the DNA damage transcriptional response, associates with Pkc1 under conditions of genotoxic stress. We also found that the induced association of Hrr25 with Pkc1 requires Mec1 and Tel1, and that Hrr25 catalytic activity is required for Pkc1-hyperphosphorylation, thereby delineating a pathway from the checkpoint kinases to Pkc1. We used SILAC mass spectrometry to identify three residues within Pkc1 the phosphorylation of which was stimulated by genotoxic stress. We mutated these residues as well as a collection of 13 phosphorylation sites within the regulatory domain of Pkc1 that fit the consensus for CK1 sites. Mutation of the 13 Pkc1 phosphorylation sites blocked hyper-phosphorylation and diminished RNR3 (RiboNucleotide Reductase) basal expression and induction by genotoxic stress, suggesting that Pkc1 plays a role in the DNA damage transcriptional response.

4.
Mol Cell Biol ; 36(6): 941-53, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729465

RESUMEN

The cell wall integrity (CWI) checkpoint in the budding yeast Saccharomyces cerevisiae coordinates cell wall construction and cell cycle progression. In this study, we showed that the regulation of Hcm1, a late-S-phase transcription factor, arrests the cell cycle via the cell wall integrity checkpoint. Although the HCM1 mRNA level remained unaffected when the cell wall integrity checkpoint was induced, the protein level decreased. The overproduction of Hcm1 resulted in the failure of the cell wall integrity checkpoint. We identified 39 Hcm1 phosphorylation sites, including 26 novel sites, by tandem mass spectrometry analysis. A mutational analysis revealed that phosphorylation of Hcm1 at S61, S65, and S66 is required for the proper onset of the cell wall integrity checkpoint by regulating the timely decrease in its protein level. Hyperactivation of the CWI mitogen-activated protein kinase (MAPK) signaling pathway significantly reduced the Hcm1 protein level, and the deletion of CWI MAPK Slt2 resulted in a failure to decrease Hcm1 protein levels in response to stress, suggesting that phosphorylation is regulated by CWI MAPK. In conclusion, we suggest that Hcm1 is regulated negatively by the cell wall integrity checkpoint through timely phosphorylation and degradation under stress to properly control budding yeast proliferation.


Asunto(s)
Pared Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Pared Celular/química , Pared Celular/genética , Factores de Transcripción Forkhead/análisis , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Mutación , Fosforilación , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Regulación hacia Arriba
5.
Mol Cell Biol ; 34(4): 711-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24324010

RESUMEN

Downregulation of specific transcripts is one of the mechanisms utilized by eukaryotic checkpoint systems to prevent cell cycle progression. Here we identified and explored such a mechanism in the yeast Saccharomyces cerevisiae. It involves the Mec1-Rad53 kinase cascade, which attenuates G(2)/M-specific gene transcription upon genotoxic stress. This inhibition is achieved via multiple Rad53-dependent inhibitory phosphorylations on the transcriptional activator Ndd1 that prevent its chromatin recruitment via interactions with the forkhead factor Fkh2. Relevant modification sites on Ndd1 were identified by mass spectrometry, and corresponding alanine substitutions were able to suppress a methyl methanesulfonate-induced block in Ndd1 chromatin recruitment. Whereas effective suppression by these Ndd1 mutants is achieved for DNA damage, this is not the case under replication stress conditions, suggesting that additional mechanisms must operate under such conditions. We propose that budding yeast cells prevent the normal transcription of G(2)/M-specific genes upon genotoxic stress to precisely coordinate the timing of mitotic and postmitotic events with respect to S phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Daño del ADN/genética , Fase G2/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Animales , Proteínas de Ciclo Celular/genética , División Celular/fisiología , Cromatina/metabolismo , Daño del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Fase G2/fisiología , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA