Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant Physiol ; 180(2): 859-873, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30971450

RESUMEN

The Golgi apparatus consists of stacked cisternae filled with enzymes that facilitate the sequential and highly controlled modification of glycans from proteins that transit through the organelle. Although the glycan processing pathways have been extensively studied, the underlying mechanisms that concentrate Golgi-resident glycosyltransferases and glycosidases in distinct Golgi compartments are poorly understood. The single-pass transmembrane domain (TMD) of n-acetylglucosaminyltransferaseI (GnTI) accounts for its steady-state distribution in the cis/medial-Golgi. Here, we investigated the contribution of individual amino acid residues within the TMD of Arabidopsis (Arabidopsis thaliana) and Nicotiana tabacum GnTI toward Golgi localization and n-glycan processing. Conserved sequence motifs within the TMD were replaced with those from the established trans-Golgi enzyme α2,6-sialyltransferase and site-directed mutagenesis was used to exchange individual amino acid residues. Subsequent subcellular localization of fluorescent fusion proteins and n-glycan profiling revealed that a conserved Gln residue in the GnTI TMD is essential for its cis/medial-Golgi localization. Substitution of the crucial Gln residue with other amino acids resulted in mislocalization to the vacuole and impaired n-glycan processing in vivo. Our results suggest that sequence-specific features of the GnTI TMD are required for its interaction with a Golgi-resident adaptor protein or a specific lipid environment that likely promotes coat protein complexI-mediated retrograde transport, thus maintaining the steady-state distribution of GnTI in the cis/medial-Golgi of plants.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis/enzimología , Aparato de Golgi/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteína Coat de Complejo I/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Dominios Proteicos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
2.
Plant J ; 94(2): 246-259, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29396984

RESUMEN

Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Glicoproteínas/metabolismo , Pliegue de Proteína , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo
3.
Plant J ; 91(4): 613-630, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28482115

RESUMEN

Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Moléculas de Adhesión Celular/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Moléculas de Adhesión Celular/genética , Retículo Endoplásmico/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Proteínas Luminiscentes , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Dominios Proteicos , Transporte de Proteínas , Proteínas Recombinantes de Fusión
4.
Plant Cell ; 26(4): 1712-1728, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24737672

RESUMEN

To ensure that aberrantly folded proteins are cleared from the endoplasmic reticulum (ER), all eukaryotic cells possess a mechanism known as endoplasmic reticulum-associated degradation (ERAD). Many secretory proteins are N-glycosylated, and despite some recent progress, little is known about the mechanism that selects misfolded glycoproteins for degradation in plants. Here, we investigated the role of Arabidopsis thaliana class I α-mannosidases (MNS1 to MNS5) in glycan-dependent ERAD. Our genetic and biochemical data show that the two ER-resident proteins MNS4 and MNS5 are involved in the degradation of misfolded variants of the heavily glycosylated brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE1, while MNS1 to MNS3 appear dispensable for this ERAD process. By contrast, N-glycan analysis of different mns mutant combinations revealed that MNS4 and MNS5 are not involved in regular N-glycan processing of properly folded secretory glycoproteins. Overexpression of MNS4 or MNS5 together with ER-retained glycoproteins indicates further that both enzymes can convert Glc0-1Man8-9GlcNAc2 into N-glycans with a terminal α1,6-linked Man residue in the C-branch. Thus, MNS4 and MNS5 function in the formation of unique N-glycan structures that are specifically recognized by other components of the ERAD machinery, which ultimately results in the disposal of misfolded glycoproteins.

5.
Plant J ; 80(5): 809-22, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25230686

RESUMEN

Golgi-resident type-II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment-specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N-acetylglucosaminyltransferase I (GnTI) for its cis/medial-Golgi localization and for protein-protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well-known trans-Golgi enzyme α2,6-sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co-localization analysis and N-glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial-Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub-Golgi localization was not able to complement the GnTI-dependent glycosylation defect. Our results suggest that sequence-specific features in the transmembrane domain of GnTI account for its steady-state distribution in the cis/medial-Golgi in plants, which is a prerequisite for efficient N-glycan processing in vivo.


Asunto(s)
Aparato de Golgi/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Citoplasma/metabolismo , Prueba de Complementación Genética , Glicosilación , N-Acetilglucosaminiltransferasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polisacáridos/química , Polisacáridos/metabolismo , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Nicotiana/citología , beta-D-Galactósido alfa 2-6-Sialiltransferasa
6.
Biochem J ; 464(3): 401-11, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25251695

RESUMEN

N-glycosylation of proteins plays an important role in the determination of the fate of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Specific oligosaccharide structures recruit molecular chaperones that promote folding or mannose-binding lectins that assist in the clearance of improperly-folded glycoproteins by delivery to ER-associated degradation (ERAD). In plants, the mechanisms and factors that recognize non-native proteins and sort them to ERAD are poorly understood. In the present study, we provide evidence that a misfolded variant of the STRUBBELIG (SUB) extracellular domain (SUBEX-C57Y) is degraded in a glycan-dependent manner in plants. SUBEX-C57Y is an ER-retained glycoprotein with three N-glycans that is stabilized in the presence of kifunensine, a potent inhibitor of α-mannosidases. Stable expression in Arabidopsis thaliana knockout mutants revealed that SUBEX-C57Y degradation is dependent on the ER lectin OS9 and its associated ERAD factor SEL1L. SUBEX-C57Y was also stabilized in plants lacking the α-mannosidases MNS4 and MNS5 that generate a terminal α1,6-linked mannose on the C-branch of N-glycans. Notably, the glycan signal for degradation is not constrained to a specific position within SUBEX-C57Y. Structural analysis revealed that SUBEX-C57Y harbours considerable amounts of Glc1Man7GlcNAc2 N-glycans suggesting that the ER-quality control processes involving calnexin/calreticulin (CNX/CRT) and ERAD are tightly interconnected to promote protein folding or disposal by termination of futile folding attempts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Polisacáridos/metabolismo , Pliegue de Proteína , Señales de Clasificación de Proteína , Proteínas Tirosina Quinasas Receptoras/metabolismo , Alcaloides/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Carbohidratos , Plantas Modificadas Genéticamente , Polisacáridos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética
7.
Plant Physiol ; 162(1): 24-38, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23493405

RESUMEN

Asparagine-linked glycosylation of proteins is an essential cotranslational and posttranslational protein modification in plants. The central step in this process is the transfer of a preassembled oligosaccharide to nascent proteins in the endoplasmic reticulum by the oligosaccharyltransferase (OST) complex. Despite the importance of the catalyzed reaction, the composition and the function of individual OST subunits are still ill defined in plants. Here, we report the function of the highly conserved OST subunit OST3/6. We have identified a mutant in the OST3/6 gene that causes overall underglycosylation of proteins and affects the biogenesis of the receptor kinase EF-TU RECEPTOR involved in innate immunity and the endo-ß-1,4-glucanase KORRIGAN1 required for cellulose biosynthesis. Notably, the ost3/6 mutation does not affect mutant variants of the receptor kinase BRASSINOSTEROID-INSENSITIVE1. OST3/6 deficiency results in activation of the unfolded protein response and causes hypersensitivity to salt/osmotic stress and to the glycosylation inhibitor tunicamycin. Consistent with its role in protein glycosylation, OST3/6 resides in the endoplasmic reticulum and interacts with other subunits of the OST complex. Together, our findings reveal the importance of Arabidopsis (Arabidopsis thaliana) OST3/6 for the efficient glycosylation of specific glycoproteins involved in different physiological processes and shed light on the composition and function of the plant OST complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Inmunidad de la Planta , Estrés Fisiológico , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Celulasa/genética , Celulasa/metabolismo , Celulosa/metabolismo , Retículo Endoplásmico/metabolismo , Glicoproteínas , Glicosilación , Hexosiltransferasas/genética , Manitol/farmacología , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Proteínas Recombinantes de Fusión , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Alineación de Secuencia , Cloruro de Sodio/farmacología , Tunicamicina/farmacología
8.
Methods Mol Biol ; 2772: 221-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411817

RESUMEN

Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum (ER). In plants, the N-glycans play a pivotal role in protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate-binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.


Asunto(s)
Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Glicosilación , Glicoproteínas , Polisacáridos
9.
J Biol Chem ; 286(12): 10793-802, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21252225

RESUMEN

Most plant glycoproteins contain substantial amounts of paucimannosidic N-glycans instead of their direct biosynthetic precursors, complex N-glycans with terminal N-acetylglucosamine residues. We now demonstrate that two ß-N-acetylhexosaminidases (HEXO1 and HEXO3) residing in different subcellular compartments jointly account for the formation of paucimannosidic N-glycans in Arabidopsis thaliana. Total N-glycan analysis of hexo knock-out plants revealed that HEXO1 and HEXO3 contribute equally to the production of paucimannosidic N-glycans in roots, whereas N-glycan processing in leaves depends more heavily on HEXO3 than on HEXO1. Because hexo1 hexo3 double mutants do not display any obvious phenotype even upon exposure to different forms of abiotic or biotic stress, it should be feasible to improve the quality of glycoprotein therapeutics produced in plants by down-regulation of endogenous ß-N-acetylhexosaminidase activities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Raíces de Plantas/enzimología , beta-N-Acetilhexosaminidasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Técnicas de Silenciamiento del Gen , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Polisacáridos/genética , Polisacáridos/metabolismo , Estrés Fisiológico/fisiología , beta-N-Acetilhexosaminidasas/genética
10.
Plant Mol Biol ; 79(1-2): 21-33, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22328055

RESUMEN

In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Glicoproteínas de Membrana/química , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Polisacáridos/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
11.
Front Chem ; 9: 816544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178379

RESUMEN

Glycosylation of viral envelope proteins is important for infectivity and immune evasion. The SARS-CoV-2 spike protein is heavily glycosylated and host-derived glycan modifications contribute to the formation of specific immunogenic epitopes, enhance the virus-cell interaction or affect virus transmission. On recombinant viral antigens used as subunit vaccines or for serological assays, distinct glycan structures may enhance the immunogenicity and are recognized by naturally occurring antibodies in human sera. Here, we performed an in vivo glycoengineering approach to produce recombinant variants of the SARS-CoV-2 receptor-binding domain (RBD) with blood group antigens in Nicotiana benthamiana plants. SARS-CoV-2 RBD and human glycosyltransferases for the blood group ABH antigen formation were transiently co-expressed in N. benthamiana leaves. Recombinant RBD was purified and the formation of complex N-glycans carrying blood group A antigens was shown by immunoblotting and MS analysis. Binding to the cellular ACE2 receptor and the conformation-dependent CR3022 antibody showed that the RBD glycosylation variants carrying blood group antigens were functional. Analysis of sera from RBD-positive and RBD-negative individuals revealed further that non-infected RBD-negative blood group O individuals have antibodies that strongly bind to RBD modified with blood group A antigen structures. The binding of IgGs derived from sera of non-infected RBD-negative blood group O individuals to blood group A antigens on SARS-CoV-2 RBD suggests that these antibodies could provide some degree of protection from virus infection.

12.
Nat Commun ; 10(1): 3701, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420549

RESUMEN

The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , alfa-Manosidasa/metabolismo , Secuencias de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Glicoproteínas , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Transporte de Proteínas
13.
Phytochemistry ; 69(10): 1983-8, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18495185

RESUMEN

alpha1,2-linked fucose can be found on xyloglucans which are the main hemicellulose compounds of dicotyledons. The fucosylated nonasaccharide XXFG derived from xyloglucans plays a role in cell signaling and is active at nanomolar concentrations. The plant enzyme acting on this alpha1,2-linked fucose residues has been previously called fucosidase II; here we report on the molecular identification of a gene from Arabidopsis thaliana (At4g34260 hereby designed AtFuc95A) encoding this enzyme. Analysis of the predicted protein composed of 843 amino acids shows that the enzyme belongs to the glycoside hydrolase family 95 and has homologous sequences in different monocotyledons and dicotyledons. The enzyme was expressed recombinantly in Nicotiana bentamiana, a band was visible by Coomassie blue staining and its identity with the alpha1,2-fucosidase was assessed by an antibody raised against a peptide from this enzyme as well as by peptide-mass mapping. The recombinant AtFuc95A is active towards 2-fucosyllactose with a Km of 0.65 mM, a specific activity of 110 mU/mg and a pH optimum of 5 but does not cleave alpha1,3, alpha1,4 or alpha1,6-fucose containing oligosaccharides and p-nitrophenyl-fucose. The recombinant enzyme is able to convert the xyloglucan fragment XXFG to XXLG, and is also active against xyloglucan polymers with a Km value for fucose residues of 1.5mM and a specific activity of 36 mU/mg. It is proposed that the AtFuc95A gene has a role in xyloglucan metabolism.


Asunto(s)
Arabidopsis/enzimología , Glucanos/metabolismo , Xilanos/metabolismo , alfa-L-Fucosidasa/química , alfa-L-Fucosidasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Expresión Génica , Cinética , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , alfa-L-Fucosidasa/genética
14.
Front Plant Sci ; 9: 1807, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30574158

RESUMEN

N-glycosylation is an essential protein modification that plays roles in many diverse biological processes including protein folding, quality control and protein interactions. Despite recent advances in characterization of the N-glycosylation and N-glycan processing machinery our understanding of N-glycosylation related processes in plant development is limited. In Arabidopsis thaliana, failure of mannose trimming from oligomannosidic N-glycans in the endoplasmic reticulum (ER) and cis/medial-Golgi leads to a defect in root development in the mns123 triple mutant. Here, we show that the severe root phenotype of mns123 is restored in asparagine-linked glycosylation (ALG)-deficient plants with distinct defects in the biosynthesis of the lipid-linked oligosaccharide precursor. The root growth of these ALG-deficient plants is not affected by the α-mannosidase inhibitor kifunensine. Genetic evidence shows that the defect is uncoupled from the glycan-dependent ER-associated degradation (ERAD) pathway that removes misfolded glycoproteins with oligomannosidic N-glycans from the ER. Restoration of mannose trimming using a trans-Golgi targeted α-mannosidase suppresses the defect of mns123 roots. These data suggest that processing of terminal mannose residues from oligomannosidic N-glycans is important for an unknown late-Golgi or post-Golgi process that is implicated in proper root formation.

15.
Methods Mol Biol ; 1691: 205-222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043680

RESUMEN

Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum. In plants, the N-glycans play a pivotal role for protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Glicosilación , Polisacáridos/metabolismo , Pliegue de Proteína , Transporte de Proteínas
16.
Methods Mol Biol ; 1497: 205-220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27864768

RESUMEN

Glycosylation is essential for all trees of life. N-glycosylation is one of the most common covalent protein modifications and influences a large variety of cellular processes including protein folding, quality control and protein-receptor interactions. Despite recent progress in understanding of N-glycan biosynthesis, our knowledge of N-glycan function on individual plant proteins is still very limited. In this respect, plant hormone receptors are an interesting group of proteins as several of these proteins are present at distinct sites in the secretory pathway or at the plasma membrane and have numerous potential N-glycosylation sites. Identifying and characterization of N-glycan structures on these proteins is essential to investigate the functional role of this abundant protein modification. Here, a straightforward immunoblot-based approach is presented that enables the analysis of N-glycosylation on endogenous hormone receptors like the brassinosteroid receptor BRI1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Polisacáridos/metabolismo , Proteínas Quinasas/metabolismo
17.
Methods Mol Biol ; 1242: 183-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25408454

RESUMEN

N-linked glycosylation is one of the most prevalent cotranslational protein modifications in plants. It is initiated by a conserved process in the endoplasmic reticulum and subsequently involves a series of different N-glycan maturation steps that take place in the ER and Golgi apparatus. Despite our vast knowledge on the different processing steps we still understand very little about the role of characteristic glycoforms present on individual plant glycoproteins. Here, we describe convenient tools that allow the fast and reliable characterization of N-glycosylation on plant glycoproteins. The presented protocols can be adopted to other plant species and to the characterization of N-glycans from different glycoproteins.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Glicoproteínas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Aparato de Golgi/metabolismo
18.
Plant Signal Behav ; 5(4): 476-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20383064

RESUMEN

In all eukaryotes, asparagine-linked glycosylation is one of the most common co- and posttranslational modifications of secretory and membrane proteins. In mammals, N-glycosylation is involved in several cellular processes including protein folding, protein stability, intracellular trafficking and interactions with other proteins. Until recently, the functional importance of protein N-glycosylation in plants has been widely elusive. We have now identified class I α-mannosidase mutants (mns) impaired in de-mannosylation of N-glycans.(1) The mns mutants accumulate high amounts of oligo-mannosidic N-glycans and display striking cell wall alterations and defects in root development. Especially the mns1 mns2 mns3 triple mutant forms short roots with radially swollen cortical cells and displays alterations in development of aerial plant parts. Our data indicate that the N-glycan processing defects in mns mutants affect one or several glycoproteins involved in cell wall formation, which could be linked to the potential impact of mannose trimming on glycoprotein quality control in the endoplasmic reticulum (ER) and ER-associated degradation of misfolded glycoproteins.

19.
Plant Physiol ; 147(1): 331-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18326787

RESUMEN

Previous studies have reported that plants contain negligible amounts of free or protein-bound N-acetylneuraminic acid (Neu5Ac). This is a major disadvantage for the use of plants as a biopharmaceutical expression system, since N-glycans with terminal Neu5Ac residues are important for the biological activities and half-lives of recombinant therapeutic glycoproteins in humans. For the synthesis of Neu5Ac-containing N-glycans, plants have to acquire the ability to synthesize Neu5Ac and its nucleotide-activated derivative, cytidine monophospho-N-acetylneuraminic acid. In this study, we have generated transgenic Arabidopsis (Arabidopsis thaliana) plants expressing three key enzymes of the mammalian Neu5Ac biosynthesis pathway: UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, N-acetylneuraminic acid phosphate synthase, and CMP-N-acetylneuraminic acid synthetase. Simultaneous expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase and N-acetylneuraminic acid phosphate synthase resulted in the generation of significant Neu5Ac amounts (1,275 nmol g(-1) fresh weight in leaves) in planta, which could be further converted to cytidine monophospho-N-acetylneuraminic acid (2.4 nmol g(-1) fresh weight in leaves) by coexpression of CMP-N-acetylneuraminic acid synthetase. These findings are a major step toward the production of Neu5Ac-containing glycoproteins in plants.


Asunto(s)
Arabidopsis/enzimología , Ácido N-Acetilneuramínico/biosíntesis , N-Acilneuraminato Citidililtransferasa/metabolismo , Oxo-Ácido-Liasas/metabolismo , Animales , Arabidopsis/genética , Carbohidrato Epimerasas/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Humanos , Ratones , Plantas Modificadas Genéticamente/enzimología , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA