Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(28): 16660-16666, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601198

RESUMEN

Molecular mechanisms enabling the switching and maintenance of epigenetic states are not fully understood. Distinct histone modifications are often associated with ON/OFF epigenetic states, but how these states are stably maintained through DNA replication, yet in certain situations switch from one to another remains unclear. Here, we address this problem through identification of Arabidopsis INCURVATA11 (ICU11) as a Polycomb Repressive Complex 2 accessory protein. ICU11 robustly immunoprecipitated in vivo with PRC2 core components and the accessory proteins, EMBRYONIC FLOWER 1 (EMF1), LIKE HETEROCHROMATIN PROTEIN1 (LHP1), and TELOMERE_REPEAT_BINDING FACTORS (TRBs). ICU11 encodes a 2-oxoglutarate-dependent dioxygenase, an activity associated with histone demethylation in other organisms, and mutant plants show defects in multiple aspects of the Arabidopsis epigenome. To investigate its primary molecular function we identified the Arabidopsis FLOWERING LOCUS C (FLC) as a direct target and found icu11 disrupted the cold-induced, Polycomb-mediated silencing underlying vernalization. icu11 prevented reduction in H3K36me3 levels normally seen during the early cold phase, supporting a role for ICU11 in H3K36me3 demethylation. This was coincident with an attenuation of H3K27me3 at the internal nucleation site in FLC, and reduction in H3K27me3 levels across the body of the gene after plants were returned to the warm. Thus, ICU11 is required for the cold-induced epigenetic switching between the mutually exclusive chromatin states at FLC, from the active H3K36me3 state to the silenced H3K27me3 state. These data support the importance of physical coupling of histone modification activities to promote epigenetic switching between opposing chromatin states.


Asunto(s)
Arabidopsis/metabolismo , Epigénesis Genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Metilación , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 16(5): e1008681, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32463832

RESUMEN

A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/metabolismo , Transposasas/fisiología , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Células Cultivadas , Domesticación , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Células Sf9 , Spodoptera , Transposasas/genética
3.
J Integr Plant Biol ; 63(8): 1462-1474, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33960113

RESUMEN

In eukaryotes, histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation. HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements (TEs) in Arabidopsis thaliana. HDA6 has been shown to participate in several complexes in plants, including a conserved SIN3 complex. Here, we uncover a novel protein complex containing HDA6, several Harbinger transposon-derived proteins (HHP1, SANT1, SANT2, SANT3, and SANT4), and MBD domain-containing proteins (MBD1, MBD2, and MBD4). We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC, MAF4, and MAF5, resulting in a late flowering phenotype. Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes, TE silencing is unaffected in sant-null mutants. Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation. Collectively, our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Domesticación , Genes de Plantas , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Transposasas/metabolismo , Acetilación , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Fenotipo , Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo
4.
J Exp Bot ; 70(19): 5271-5285, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31504763

RESUMEN

Photosynthetic efficiencies in plants are restricted by the CO2-fixing enzyme Rubisco but could be enhanced by introducing a CO2-concentrating mechanism (CCM) from green algae, such as Chlamydomonas reinhardtii (hereafter Chlamydomonas). A key feature of the algal CCM is aggregation of Rubisco in the pyrenoid, a liquid-like organelle in the chloroplast. Here we have used a yeast two-hybrid system and higher plants to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1), a linker protein required for Rubisco aggregation. We showed that EPYC1 interacts with the small subunit of Rubisco (SSU) from Chlamydomonas and that EPYC1 has at least five SSU interaction sites. Interaction is crucially dependent on the two surface-exposed α-helices of the Chlamydomonas SSU. EPYC1 could be localized to the chloroplast in higher plants and was not detrimental to growth when expressed stably in Arabidopsis with or without a Chlamydomonas SSU. Although EPYC1 interacted with Rubisco in planta, EPYC1 was a target for proteolytic degradation. Plants expressing EPYC1 did not show obvious evidence of Rubisco aggregation. Nevertheless, hybrid Arabidopsis Rubisco containing the Chlamydomonas SSU could phase separate into liquid droplets with purified EPYC1 in vitro, providing the first evidence of pyrenoid-like aggregation for Rubisco derived from a higher plant.


Asunto(s)
Proteínas Algáceas/metabolismo , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantas Modificadas Genéticamente/metabolismo
5.
Plant J ; 88(1): 71-81, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27385642

RESUMEN

UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet-B (UV-B) light that initiates photomorphogenic responses in plants. UV-B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt-bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt-bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt-bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV-B responses in vivo with a similar dose-response relationship to wild-type. The UV-B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV-B photoreception, initiating signal transduction and responses in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mutación , Ubiquitina-Proteína Ligasas , Rayos Ultravioleta
6.
J Exp Bot ; 68(14): 3717-3737, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444330

RESUMEN

Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.


Asunto(s)
Cianobacterias/genética , Embryophyta/genética , Fotosíntesis , Plantas Modificadas Genéticamente/genética , Biofisica , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(32): 11894-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071218

RESUMEN

Plants detect different facets of their radiation environment via specific photoreceptors to modulate growth and development. UV-B is perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). The molecular mechanisms linking UVR8 activation to plant growth are not fully understood, however. When grown in close proximity to neighboring vegetation, shade-intolerant plants initiate dramatic stem elongation to overtop competitors. Here we show that UV-B, detected by UVR8, provides an unambiguous sunlight signal that inhibits shade avoidance responses in Arabidopsis thaliana by antagonizing the phytohormones auxin and gibberellin. UV-B triggers degradation of the transcription factors PHYTOCHROME INTERACTING FACTOR 4 and PHYTOCHROME INTERACTING FACTOR 5 and stabilizes growth-repressing DELLA proteins, inhibiting auxin biosynthesis via a dual mechanism. Our findings show that UVR8 signaling is closely integrated with other photoreceptor pathways to regulate auxin signaling and plant growth in sunlight.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Genes de Plantas , Giberelinas/metabolismo , Giberelinas/efectos de la radiación , Ácidos Indolacéticos/antagonistas & inhibidores , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fotorreceptores de Plantas/genética , Plantas Modificadas Genéticamente , Estabilidad Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , Transducción de Señal/efectos de la radiación , Luz Solar , Rayos Ultravioleta
8.
Plant Mol Biol ; 92(4-5): 425-443, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27534420

RESUMEN

The photoreceptor UV RESISTANCE LOCUS 8 (UVR8) specifically mediates photomorphogenic responses to UV-B wavelengths. UVR8 acts by regulating transcription of a set of genes, but the underlying mechanisms are unknown. Previous research indicated that UVR8 can associate with chromatin, but the specificity and functional significance of this interaction are not clear. Here we show, by chromatin immunoprecipitation, that UV-B exposure of Arabidopsis increases acetylation of lysines K9 and/or K14 of histone H3 at UVR8-regulated gene loci in a UVR8-dependent manner. The transcription factors HY5 and/or HYH, which mediate UVR8-regulated transcription, are also required for this chromatin modification, at least for the ELIP1 gene. Furthermore, sequencing of the immunoprecipitated DNA revealed that all UV-B-induced enrichments in H3K9,14diacetylation across the genome are UVR8-dependent, and approximately 40 % of the enriched loci contain known UVR8-regulated genes. In addition, inhibition of histone acetylation by anacardic acid reduces the UV-B induced, UVR8 mediated expression of ELIP1 and CHS. No evidence was obtained in yeast 2-hybrid assays for a direct interaction between either UVR8 or HY5 and several proteins involved in light-regulated histone modification, nor for the involvement of these proteins in UVR8-mediated responses in plants, although functional redundancy between proteins could influence the results. In summary, this study shows that UVR8 regulates a specific chromatin modification associated with transcriptional regulation of a set of UVR8-target genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas , Código de Histonas , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Cromatina/efectos de la radiación , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histonas/metabolismo , Rayos Ultravioleta
9.
Nat Commun ; 15(1): 1221, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336824

RESUMEN

Exposure of plants to ultraviolet-B (UV-B) radiation initiates transcriptional responses that modify metabolism, physiology and development to enhance viability in sunlight. Many of these regulatory responses to UV-B radiation are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Following photoreception, UVR8 interacts directly with multiple proteins to regulate gene expression, but the mechanisms that control differential protein binding to initiate distinct responses are unknown. Here we show that UVR8 is phosphorylated at several sites and that UV-B stimulates phosphorylation at Serine 402. Site-directed mutagenesis to mimic Serine 402 phosphorylation promotes binding of UVR8 to REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, which negatively regulate UVR8 action. Complementation of the uvr8 mutant with phosphonull or phosphomimetic variants suggests that phosphorylation of Serine 402 modifies UVR8 activity and promotes flavonoid biosynthesis, a key UV-B-stimulated response that enhances plant protection and crop nutritional quality. This research provides a basis to understand how UVR8 interacts differentially with effector proteins to regulate plant responses to UV-B radiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Cromosómicas no Histona , Rayos Ultravioleta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Serina/metabolismo
10.
Plant Cell Physiol ; 50(10): 1761-73, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19690000

RESUMEN

In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time (15)N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [(15)N]Glu or (15)NH(4)(+) respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants.


Asunto(s)
Glutamato Deshidrogenasa/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/metabolismo , Glutamato Deshidrogenasa/genética , Ácido Glutámico/biosíntesis , Espectroscopía de Resonancia Magnética , Nitrógeno/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Compuestos de Amonio Cuaternario/metabolismo , Nicotiana/genética
11.
Curr Biol ; 27(24): R1324-R1326, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29257969

RESUMEN

Cells inherit molecular 'memories' of previously experienced conditions through epigenetic processes. Recent findings provide insights into the problem of how epigenetic states are inherited through cell division, with intriguing mechanistic links to histone variants and DNA replication.


Asunto(s)
Arabidopsis , Histonas/genética , Replicación del ADN , Epigénesis Genética , Epigenómica , Proteínas del Grupo Polycomb/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA