RESUMEN
Proteins are key to all cellular processes and their structure is important in understanding their function and evolution. Sequence-based predictions of protein structures have increased in accuracy1, and over 214 million predicted structures are available in the AlphaFold database2. However, studying protein structures at this scale requires highly efficient methods. Here, we developed a structural-alignment-based clustering algorithm-Foldseek cluster-that can cluster hundreds of millions of structures. Using this method, we have clustered all of the structures in the AlphaFold database, identifying 2.30 million non-singleton structural clusters, of which 31% lack annotations representing probable previously undescribed structures. Clusters without annotation tend to have few representatives covering only 4% of all proteins in the AlphaFold database. Evolutionary analysis suggests that most clusters are ancient in origin but 4% seem to be species specific, representing lower-quality predictions or examples of de novo gene birth. We also show how structural comparisons can be used to predict domain families and their relationships, identifying examples of remote structural similarity. On the basis of these analyses, we identify several examples of human immune-related proteins with putative remote homology in prokaryotic species, illustrating the value of this resource for studying protein function and evolution across the tree of life.
Asunto(s)
Algoritmos , Análisis por Conglomerados , Proteínas , Homología Estructural de Proteína , Humanos , Bases de Datos de Proteínas , Proteínas/química , Proteínas/clasificación , Proteínas/metabolismo , Alineación de Secuencia , Anotación de Secuencia Molecular , Células Procariotas/química , Filogenia , Especificidad de la Especie , Evolución MolecularRESUMEN
Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure1. Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold2, at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective.
Asunto(s)
Biología Computacional/normas , Aprendizaje Profundo/normas , Modelos Moleculares , Conformación Proteica , Proteoma/química , Conjuntos de Datos como Asunto/normas , Diacilglicerol O-Acetiltransferasa/química , Glucosa-6-Fosfatasa/química , Humanos , Proteínas de la Membrana/química , Pliegue de Proteína , Reproducibilidad de los ResultadosRESUMEN
The AlphaFold Database Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) has significantly impacted structural biology by amassing over 214 million predicted protein structures, expanding from the initial 300k structures released in 2021. Enabled by the groundbreaking AlphaFold2 artificial intelligence (AI) system, the predictions archived in AlphaFold DB have been integrated into primary data resources such as PDB, UniProt, Ensembl, InterPro and MobiDB. Our manuscript details subsequent enhancements in data archiving, covering successive releases encompassing model organisms, global health proteomes, Swiss-Prot integration, and a host of curated protein datasets. We detail the data access mechanisms of AlphaFold DB, from direct file access via FTP to advanced queries using Google Cloud Public Datasets and the programmatic access endpoints of the database. We also discuss the improvements and services added since its initial release, including enhancements to the Predicted Aligned Error viewer, customisation options for the 3D viewer, and improvements in the search engine of AlphaFold DB.
The AlphaFold Protein Structure Database (AlphaFold DB) is a massive digital library of predicted protein structures, with over 214 million entries, marking a 500-times expansion in size since its initial release in 2021. The structures are predicted using Google DeepMind's AlphaFold 2 artificial intelligence (AI) system. Our new report highlights the latest updates we have made to this database. We have added more data on specific organisms and proteins related to global health and expanded to cover almost the complete UniProt database, a primary data resource of protein sequences. We also made it easier for our users to access the data by directly downloading files or using advanced cloud-based tools. Finally, we have also improved how users view and search through these protein structures, making the user experience smoother and more informative. In short, AlphaFold DB has been growing rapidly and has become more user-friendly and robust to support the broader scientific community.
Asunto(s)
Inteligencia Artificial , Estructura Secundaria de Proteína , Proteoma , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Motor de Búsqueda , Proteínas/químicaRESUMEN
The European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) is one of the world's leading sources of public biomolecular data. Based at the Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is one of six sites of the European Molecular Biology Laboratory (EMBL), Europe's only intergovernmental life sciences organisation. This overview summarises the latest developments in the services provided by EMBL-EBI data resources to scientific communities globally. These developments aim to ensure EMBL-EBI resources meet the current and future needs of these scientific communities, accelerating the impact of open biological data for all.
Asunto(s)
Academias e Institutos , Biología Computacional , Biología Computacional/organización & administración , Biología Computacional/tendencias , Academias e Institutos/organización & administración , Academias e Institutos/tendencias , Bases de Datos de Ácidos Nucleicos , Europa (Continente)RESUMEN
The European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) is one of the world's leading sources of public biomolecular data. Based at the Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is one of six sites of the European Molecular Biology Laboratory (EMBL), Europe's only intergovernmental life sciences organisation. This overview summarises the status of services that EMBL-EBI data resources provide to scientific communities globally. The scale, openness, rich metadata and extensive curation of EMBL-EBI added-value databases makes them particularly well-suited as training sets for deep learning, machine learning and artificial intelligence applications, a selection of which are described here. The data resources at EMBL-EBI can catalyse such developments because they offer sustainable, high-quality data, collected in some cases over decades and made openly availability to any researcher, globally. Our aim is for EMBL-EBI data resources to keep providing the foundations for tools and research insights that transform fields across the life sciences.
Asunto(s)
Inteligencia Artificial , Biología Computacional , Manejo de Datos , Bases de Datos Factuales , Genoma , InternetRESUMEN
Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques, such as RoseTTAFold and AlphaFold, we can predict the structure of proteins even in the absence of structural homologs. We modeled and extracted the domains from 553 disease-associated human proteins without known protein structures or close homologs in the Protein Databank. We noticed that the model quality was higher and the Root mean square deviation (RMSD) lower between AlphaFold and RoseTTAFold models for domains that could be assigned to CATH families as compared to those which could only be assigned to Pfam families of unknown structure or could not be assigned to either. We predicted ligand-binding sites, protein-protein interfaces and conserved residues in these predicted structures. We then explored whether the disease-associated missense mutations were in the proximity of these predicted functional sites, whether they destabilized the protein structure based on ddG calculations or whether they were predicted to be pathogenic. We could explain 80% of these disease-associated mutations based on proximity to functional sites, structural destabilization or pathogenicity. When compared to polymorphisms, a larger percentage of disease-associated missense mutations were buried, closer to predicted functional sites, predicted as destabilizing and pathogenic. Usage of models from the two state-of-the-art techniques provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not be explained based solely on AlphaFold models.
Asunto(s)
Mutación Missense , Proteínas , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Mutación , Proteínas/química , Proteínas/genéticaRESUMEN
SUMMARY: PDBImages is an innovative, open-source Node.js package that harnesses the power of the popular macromolecule structure visualization software Mol*. Designed for use by the scientific community, PDBImages provides a means to generate high-quality images for PDB and AlphaFold DB models. Its unique ability to render and save images directly to files in a browserless mode sets it apart, offering users a streamlined, automated process for macromolecular structure visualization. Here, we detail the implementation of PDBImages, enumerating its diverse image types, and elaborating on its user-friendly setup. This powerful tool opens a new gateway for researchers to visualize, analyse, and share their work, fostering a deeper understanding of bioinformatics. AVAILABILITY AND IMPLEMENTATION: PDBImages is available as an npm package from https://www.npmjs.com/package/pdb-images. The source code is available from https://github.com/PDBeurope/pdb-images.
Asunto(s)
Biología Computacional , Programas Informáticos , Estructura Molecular , Biología Computacional/métodosRESUMEN
The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set.
Asunto(s)
Bases de Datos de Proteínas , Pliegue de Proteína , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Animales , Bacterias/genética , Bacterias/metabolismo , Conjuntos de Datos como Asunto , Dictyostelium/genética , Dictyostelium/metabolismo , Hongos/genética , Hongos/metabolismo , Humanos , Internet , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas/genética , Proteínas/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismoRESUMEN
Arguably, 2020 was the year of high-accuracy protein structure predictions, with AlphaFold 2.0 achieving previously unseen accuracy in the Critical Assessment of Protein Structure Prediction (CASP). In 2021, DeepMind and EMBL-EBI developed the AlphaFold Protein Structure Database to make an unprecedented number of reliable protein structure predictions easily accessible to the broad scientific community. We provide a brief overview and describe the latest developments in the AlphaFold database. We highlight how the fields of data services, bioinformatics, structural biology, and drug discovery are directly affected by the influx of protein structure data. We also show examples of cutting-edge research that took advantage of the AlphaFold database. It is apparent that connections between various fields through protein structures are now possible, but the amount of data poses new challenges. Finally, we give an outlook regarding the future direction of the database, both in terms of data sets and new functionalities.
Asunto(s)
Disciplinas de las Ciencias Biológicas , Proteínas , Conformación Proteica , Bases de Datos de Proteínas , Proteínas/química , Biología ComputacionalRESUMEN
The rapid evolution of protein structure prediction tools has significantly broadened access to protein structural data. Although predicted structure models have the potential to accelerate and impact fundamental and translational research significantly, it is essential to note that they are not validated and cannot be considered the ground truth. Thus, challenges persist, particularly in capturing protein dynamics, predicting multi-chain structures, interpreting protein function, and assessing model quality. Interdisciplinary collaborations are crucial to overcoming these obstacles. Databases like the AlphaFold Protein Structure Database, the ESM Metagenomic Atlas, and initiatives like the 3D-Beacons Network provide FAIR access to these data, enabling their interpretation and application across a broader scientific community. Whilst substantial advancements have been made in protein structure prediction, further progress is required to address the remaining challenges. Developing training materials, nurturing collaborations, and ensuring open data sharing will be paramount in this pursuit. The continued evolution of these tools and methodologies will deepen our understanding of protein function and accelerate disease pathogenesis and drug development discoveries.
RESUMEN
SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.
Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Biología Computacional , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Humanos , Conformación Proteica , Proteínas Virales/químicaRESUMEN
Large biomolecular structures are being determined experimentally on a daily basis using established techniques such as crystallography and electron microscopy. In addition, emerging integrative or hybrid methods (I/HM) are producing structural models of huge macromolecular machines and assemblies, sometimes containing 100s of millions of non-hydrogen atoms. The performance requirements for visualization and analysis tools delivering these data are increasing rapidly. Significant progress in developing online, web-native three-dimensional (3D) visualization tools was previously accomplished with the introduction of the LiteMol suite and NGL Viewers. Thereafter, Mol* development was jointly initiated by PDBe and RCSB PDB to combine and build on the strengths of LiteMol (developed by PDBe) and NGL (developed by RCSB PDB). The web-native Mol* Viewer enables 3D visualization and streaming of macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations. High-performance graphics and data management allows users to simultaneously visualise up to hundreds of (superimposed) protein structures, stream molecular dynamics simulation trajectories, render cell-level models, or display huge I/HM structures. It is the primary 3D structure viewer used by PDBe and RCSB PDB. It can be easily integrated into third-party services. Mol* Viewer is open source and freely available at https://molstar.org/.
Asunto(s)
Sustancias Macromoleculares/química , Modelos Moleculares , Programas Informáticos , Internet , Conformación ProteicaRESUMEN
SUMMARY: The PDBe aggregated API is an open-access and open-source RESTful API that provides programmatic access to a wealth of macromolecular structural data and their functional and biophysical annotations through 80+ API endpoints. The API is powered by the PDBe graph database (https://pdbe.org/graph-schema), an open-access integrative knowledge graph that can be used as a discovery tool to answer complex biological questions. AVAILABILITY AND IMPLEMENTATION: The PDBe aggregated API provides up-to-date access to the PDBe graph database, which has weekly releases with the latest data from the Protein Data Bank, integrated with updated annotations from UniProt, Pfam, CATH, SCOP and the PDBe-KB partner resources. The complete list of all the available API endpoints and their descriptions are available at https://pdbe.org/graph-api. The source code of the Python 3.6+ API application is publicly available at https://gitlab.ebi.ac.uk/pdbe-kb/services/pdbe-graph-api. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Programas Informáticos , Estructura Molecular , Bases de Datos de Proteínas , Conformación ProteicaRESUMEN
Genome3D (https://www.genome3d.eu) is a freely available resource that provides consensus structural annotations for representative protein sequences taken from a selection of model organisms. Since the last NAR update in 2015, the method of data submission has been overhauled, with annotations now being 'pushed' to the database via an API. As a result, contributing groups are now able to manage their own structural annotations, making the resource more flexible and maintainable. The new submission protocol brings a number of additional benefits including: providing instant validation of data and avoiding the requirement to synchronise releases between resources. It also makes it possible to implement the submission of these structural annotations as an automated part of existing internal workflows. In turn, these improvements facilitate Genome3D being opened up to new prediction algorithms and groups. For the latest release of Genome3D (v2.1), the underlying dataset of sequences used as prediction targets has been updated using the latest reference proteomes available in UniProtKB. A number of new reference proteomes have also been added of particular interest to the wider scientific community: cow, pig, wheat and mycobacterium tuberculosis. These additions, along with improvements to the underlying predictions from contributing resources, has ensured that the number of annotations in Genome3D has nearly doubled since the last NAR update article. The new API has also been used to facilitate the dissemination of Genome3D data into InterPro, thereby widening the visibility of both the annotation data and annotation algorithms.
Asunto(s)
Proteínas/química , Bases de Datos de Proteínas , Proteínas/clasificación , Proteínas/genética , Interfaz Usuario-ComputadorRESUMEN
The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with â¼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.
Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Análisis por Conglomerados , Exactitud de los Datos , Europa (Continente) , Conformación Proteica , Interfaz Usuario-ComputadorRESUMEN
BACKGROUND: Biomacromolecular structural data outgrew the legacy Protein Data Bank (PDB) format which the scientific community relied on for decades, yet the use of its successor PDBx/Macromolecular Crystallographic Information File format (PDBx/mmCIF) is still not widespread. Perhaps one of the reasons is the availability of easy to use tools that only support the legacy format, but also the inherent difficulties of processing mmCIF files correctly, given the number of edge cases that make efficient parsing problematic. Nevertheless, to fully exploit macromolecular structure data and their associated annotations such as multiscale structures from integrative/hybrid methods or large macromolecular complexes determined using traditional methods, it is necessary to fully adopt the new format as soon as possible. RESULTS: To this end, we developed PDBeCIF, an open-source Python project for manipulating mmCIF and CIF files. It is part of the official list of mmCIF parsers recorded by the wwPDB and is heavily employed in the processes of the Protein Data Bank in Europe. The package is freely available both from the PyPI repository ( http://pypi.org/project/pdbecif ) and from GitHub ( https://github.com/pdbeurope/pdbecif ) along with rich documentation and many ready-to-use examples. CONCLUSIONS: PDBeCIF is an efficient and lightweight Python 2.6+/3+ package with no external dependencies. It can be readily integrated with 3rd party libraries as well as adopted for broad scientific analyses.
Asunto(s)
Programas Informáticos , Bases de Datos de Proteínas , Europa (Continente) , Sustancias Macromoleculares , Estructura MolecularRESUMEN
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Proteínas , Programas Informáticos , Sitios de Unión , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de ProteínaRESUMEN
Since 1971, the Protein Data Bank (PDB) has served as the single global archive for experimentally determined 3D structures of biological macromolecules made freely available to the global community according to the FAIR principles of Findability-Accessibility-Interoperability-Reusability. During the first 50 years of continuous PDB operations, standards for data representation have evolved to better represent rich and complex biological phenomena. Carbohydrate molecules present in more than 14,000 PDB structures have recently been reviewed and remediated to conform to a new standardized format. This machine-readable data representation for carbohydrates occurring in the PDB structures and the corresponding reference data improves the findability, accessibility, interoperability and reusability of structural information pertaining to these molecules. The PDB Exchange MacroMolecular Crystallographic Information File data dictionary now supports (i) standardized atom nomenclature that conforms to International Union of Pure and Applied Chemistry-International Union of Biochemistry and Molecular Biology (IUPAC-IUBMB) recommendations for carbohydrates, (ii) uniform representation of branched entities for oligosaccharides, (iii) commonly used linear descriptors of carbohydrates developed by the glycoscience community and (iv) annotation of glycosylation sites in proteins. For the first time, carbohydrates in PDB structures are consistently represented as collections of standardized monosaccharides, which precisely describe oligosaccharide structures and enable improved carbohydrate visualization, structure validation, robust quantitative and qualitative analyses, search for dendritic structures and classification. The uniform representation of carbohydrate molecules in the PDB described herein will facilitate broader usage of the resource by the glycoscience community and researchers studying glycoproteins.
Asunto(s)
Carbohidratos , Proteínas , Carbohidratos/química , Bases de Datos de Proteínas , Proteínas/químicaRESUMEN
3D macromolecular structural data is growing ever more complex and plentiful in the wake of substantive advances in experimental and computational structure determination methods including macromolecular crystallography, cryo-electron microscopy, and integrative methods. Efficient means of working with 3D macromolecular structural data for archiving, analyses, and visualization are central to facilitating interoperability and reusability in compliance with the FAIR Principles. We address two challenges posed by growth in data size and complexity. First, data size is reduced by bespoke compression techniques. Second, complexity is managed through improved software tooling and fully leveraging available data dictionary schemas. To this end, we introduce BinaryCIF, a serialization of Crystallographic Information File (CIF) format files that maintains full compatibility to related data schemas, such as PDBx/mmCIF, while reducing file sizes by more than a factor of two versus gzip compressed CIF files. Moreover, for the largest structures, BinaryCIF provides even better compression-factor ten and four versus CIF files and gzipped CIF files, respectively. Herein, we describe CIFTools, a set of libraries in Java and TypeScript for generic and typed handling of CIF and BinaryCIF files. Together, BinaryCIF and CIFTools enable lightweight, efficient, and extensible handling of 3D macromolecular structural data.
Asunto(s)
Cristalografía/métodos , Compresión de Datos/métodos , Modelos Moleculares , Programas Informáticos , Bases de Datos de Compuestos Químicos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructuraRESUMEN
The Structure Integration with Function, Taxonomy and Sequences resource (SIFTS; http://pdbe.org/sifts/) was established in 2002 and continues to operate as a collaboration between the Protein Data Bank in Europe (PDBe; http://pdbe.org) and the UniProt Knowledgebase (UniProtKB; http://uniprot.org). The resource is instrumental in the transfer of annotations between protein structure and protein sequence resources through provision of up-to-date residue-level mappings between entries from the PDB and from UniProtKB. SIFTS also incorporates residue-level annotations from other biological resources, currently comprising the NCBI taxonomy database, IntEnz, GO, Pfam, InterPro, SCOP, CATH, PubMed, Ensembl, Homologene and automatic Pfam domain assignments based on HMM profiles. The recently released implementation of SIFTS includes support for multiple cross-references for proteins in the PDB, allowing mappings to UniProtKB isoforms and UniRef90 cluster members. This development makes structure data in the PDB readily available to over 1.8 million UniProtKB accessions.