Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Breed ; 44(4): 30, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634111

RESUMEN

The gene-derived functional markers are considered effective to use in marker-assisted breeding and genetic diversity analysis. As of now, no functional markers have been identified from miRNAs regulating yield traits. The miRNAs play a key role as regulators in controlling the candidate genes involved in grain yield improvement in rice. In this study, 13 miRNA-SSR and their target gene SSR markers were mined from 29 yield-responsive miRNA along with their 29 target genes in rice. The validation of these markers showed that four miRNA-SSRs and one target gene SSR markers had shown polymorphism among 120 diverse rice genotypes. The PIC values ranged from 0.25 (OsARF18-SSR) to 0.72 (miR408-SSR, miR172b-SSR, and miR396f-SSR) with an average value of 0.57. These polymorphic markers grouped 120 rice genotypes into 3 main clusters based on the levels of high genetic diversity. These markers also showed significant association with key yield traits. Among all, miR172b-SSR showed a strong association with plant height in two seasons. This investigation suggests that this new class of molecular markers has great potential in the characterization of rice germplasm by genetic diversity and population structure and in marker-assisted breeding for the development of high-yielding varieties. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01462-z.

2.
Mol Biol Rep ; 51(1): 381, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430361

RESUMEN

BACKGROUND: The development of sheath blight (ShB) resistance varieties has been a challenge for scientists for long time in rice. Activation tagging is an efficient gain-of-function mutation approach to create novel phenotypes and to identify their underlying genes. In this study, a mutant population was developed employing activation tagging in the recalcitrant indica rice (Oryza sativa L.) cv. BPT 5204 (Samba Mahsuri) through activation tagging. METHODS AND RESULTS: In this study, we have generated more than 1000 activation tagged lines in indica rice, from these mutant population 38 (GFP- RFP+) stable Ds plants were generated through germinal transposition at T2 generation based on molecular analysis and seeds selected on hygromycin (50 mg/L) containing medium segregation analyses confirmed that the transgene inherited as mendelian segregation ratio of 3:1 (3 resistant: 1 susceptible). Of them, five stable activation tagged Ds lines (M-Ds-1, M-Ds-2, M-Ds-3, M-Ds-4 and M-Ds-5) were selected based on phenotypic observation through screening for sheath blight (ShB) resistance caused by fungal pathogen Rhizoctonia solani (R. solani),. Among them, M-Ds-3 and M-Ds-5 lines showed significant resistance for ShB over other tagged lines and wild type (WT) plants. Furthermore, analysed for launch pad insertion through TAIL-PCR results and mapped on corresponding rice chromosomes. Flanking sequence and gene expression analysis revealed that the upregulation of glycoside hydrolase-OsGH or similar to Class III chitinase homologue (LOC_Os08g40680) in M-Ds-3 and a hypothetical protein gene (LOC_Os01g55000) in M-Ds-5 are potential candidate genes for sheath blight resistance in rice. CONCLUSION: In the present study, we developed Ac-Ds based ShB resistance gain-of-functional mutants through activation tagging in rice. These activation tagged mutant lines can be excellent sources for the development of ShB resistant cultivars in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/microbiología , Perfilación de la Expresión Génica
3.
BMC Plant Biol ; 23(1): 493, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833626

RESUMEN

BACKGROUND: Reproductive stage drought stress (RDS) is a major global threat to rice production. Due to climate change, water scarcity is becoming an increasingly common phenomenon in major rice-growing areas worldwide. Understanding RDS mechanisms will allow candidate gene identification to generate novel rice genotypes tolerant to RDS. RESULTS: To generate novel rice genotypes that can sustain yield under RDS, we performed gamma-irradiation mediated mutation breeding in the drought stress susceptible mega rice variety, MTU1010. One of the mutant MM11 (MTU1010 derived mutant11) shows consistently increased performance in yield-related traits under field conditions consecutively for four generations. In addition, compared to MTU1010, the yield of MM11 is sustained in prolonged drought imposed during the reproductive stage under field and in pot culture conditions. A comparative emerged panicle transcriptome analysis of the MTU1010 and MM11 suggested metabolic adjustment, enhanced photosynthetic ability, and hormone interplay in regulating yield under drought responses during emerged panicle development. Regulatory network analysis revealed few putative significant transcription factor (TF)-target interactions involved in integrated signalling between panicle development, yield and drought stress. CONCLUSIONS: A gamma-irradiate rice mutant MM11 was identified by mutation breeding, and it showed higher potential to sustain yield under reproductive stage drought stress in field and pot culture conditions. Further, a comparative panicle transcriptome revealed significant biological processes and molecular regulators involved in emerged panicle development, yield and drought stress integration. The study extends our understanding of the physiological mechanisms and candidate genes involved in sustaining yield under drought stress.


Asunto(s)
Oryza , Transcriptoma , Oryza/metabolismo , Sequías , Fitomejoramiento , Genes Reguladores , Estrés Fisiológico/genética
4.
Mol Biol Rep ; 50(10): 8177-8188, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555871

RESUMEN

BACKGROUND: The eventual shifting of cultivation method from puddle transplanted rice to direct-seeded rice (DSR) to save water prompted researchers to develop DSR-suitable varieties. To achieve this, identification of molecular markers associated with must-have traits for DSR, especially early seedling vigour related traits is crucial. METHODS AND RESULTS: In the present investigation, the haplotype analysis using flanking markers of three important quantitative trait loci (QTLs) for early seedling vigour-related traits viz., qSV-6a (RM204 and RM402) for root length; qVI (RM20429 and RM3) for seedling vigour index; qGP-6 (RM528 and RM400) for germination percentage revealed that the marker alleles were found to show significant associations with qVI and qGP-6 QTLs. The majority of genotypes with high early seedling vigour are with qVIHap-1 (220 and 160 bp) and qGPHap-1 (290 and 290 bp). The rice genotypes with superior haplotypes for early seedling vigour are BMF536, BMF540, BMF525, MM129 and MDP2. CONCLUSIONS: In conclusion, here we demonstrated that the markers RM20429 and RM3 are associated with seedling vigour index whereas RM528 and RM400 are associated with germination percentage. Therefore, these markers can be utilized to develop varieties suitable for DSR conditions through haplotype-based breeding. In addition, the rice genotypes with superior haplotypes can be of immense value to use as donors or can be released as varieties also under DSR conditions.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Plantones/genética , Oryza/genética , Haplotipos/genética , Fitomejoramiento
5.
Mol Biol Rep ; 50(2): 1499-1515, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36507967

RESUMEN

BACKGROUND: Rice crop is damaged extremely by abiotic stress world-wide. The best approach to enhance drought tolerance in rice varieties is to identify and introgress yield QTLs with major effects. The Association mapping approach helps in the identification of genomic regions governing physiological, yield and yield attributes under moisture and heat stress conditions in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. METHODS AND RESULTS: The association mapping panel of 110 rice germplasm lines exhibited significant variation for all the traits in both irrigated and moisture stress conditions. The extent of yield reduction ranged to 83% during rabi, 2018-19, 53% in rabi, 2019-20 and 68% in pooled analysis. The genotypes Badami, Badshabhog, Pankaj, Varalu, Vasundhara, Vivekdhan, Krishna and Minghui63 exhibited drought tolerance with least yield penalty under moisture stress conditions. The genotypes Konark, MTU3626, NLR33671, PR118 and Triguna exhibited minimal reduction in heat stress tolerance traits. Association mapping of germplasm using 37808 SNP markers detected a total of 10 major MTA (Marker-trait association) clusters distributed on chromosomes 1, 3, 4 and 11 through mixed linear model (MLM) governing multiple traits from individual data analysis which are consistent across the years and situations. The pooled data generated a total of five MTA clusters located on chromosome 6. In addition, several novel unique MTAs were also identified. Heat stress analysis generated a total of 23 MTAs distributed on chromosomes 1, 5, 6 and 11. Candidate gene analysis detected a total of 53 and 38 genes under individual and pooled data analysis for various yield and yield attributes under control and moisture stress conditions, respectively and a total of 11 candidate genes in heat stress Conditions. CONCLUSION: The major and novel MTAs identified in the present investigation for various drought and heat tolerant traits can be utilized for breeding climate-resilient rice varieties. The candidate genes predicted for key MTAs are of great value to deploy into the rice breeding after functional characterization.


Asunto(s)
Oryza , Mapeo Cromosómico/métodos , Oryza/genética , Fitomejoramiento , Respuesta al Choque Térmico/genética , Fenotipo , Genómica
6.
Mol Biol Rep ; 49(8): 7649-7663, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35612779

RESUMEN

BACKGROUND: With the increase in population and economies of developing countries in Asia and Africa, the research towards securing future food demands is an imminent need. Among japonica and indica genotypes, indica rice varieties are largely cultivated across the globe. However, our present understanding of yield-contributing gene information stems mainly from japonica and studies on the yield potential of indica genotypes are limited. METHODS AND RESULTS: In the present study, yield contributing orthologous genes previously characterized from japonica varieties were identified in the indica genome and analysed with binGO tool for GO biological processes categorization. Transcription factor binding site enrichment analysis in the promoters of yield-related genes of indica was performed with MEME-AME tool that revealed putative common TF regulators are enriched in flower development, two-component signalling and water deprivation biological processes. Gene regulatory networks revealed important TF-target interactions that might govern yield-related traits. Some of the identified candidate genes were validated by qRT-PCR analysis for their expression and association with yield-related traits among 16 widely cultivated popular indica genotypes. Further, SNP-metabolite-trait association analysis was performed using high-yielding indica variety Rasi. This resulted in the identification of putative SNP variations in TF regulators and targeted yield genes significantly linked with metabolite accumulation. CONCLUSIONS: The study suggests some of the high yielding indica genotypes such as Ravi003, Rasi and Kavya could be used as potential donors in breeding programs based on yield gene expression analysis and SNP-metabolites associations.


Asunto(s)
Oryza , Redes Reguladoras de Genes/genética , Genotipo , Oryza/genética , Fenotipo , Fitomejoramiento
7.
Mol Biol Rep ; 48(3): 2209-2221, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33675464

RESUMEN

Rice varietal identification is a crucial aspect in breeding, seed production and trade in order to protect the interests of the farmers and consumers. As the number of varieties released is rising every year, the need to identify them unambiguously also increases. Here, we developed a novel barcode system to identify 62 rice genotypes using agro-morphological descriptors and molecular markers. In all, 62 rice genotypes, for 22 agro-morphological traits were recorded. In addition, 19 molecular markers were used for developing genotype-specific DNA fingerprints. The descriptor notes of 10 essential agro-morphological traits and allele codes of the polymorphic markers were used to generate two-dimensional (2-D) barcodes for the rice genotypes. Using agro-morphological traits, 31 rice genotypes were unambiguously distinguished while, with the polymorphic markers we were able to distinguish all rice genotypes except BPT2295 and Jaya. However, using both agro-morphological descriptors and molecular markers in combination, it was possible to distinguish all the rice genotypes used in the present study. These agro-morphological notes and allele codes from the molecular marker data together were used to develop QR (Quick Response) codes for rapid identification of rice genotypes as they facilitate storage of more data. In the present investigation, we have demonstrated the potentiality of agro-morphological traits and molecular markers in distinguishing rice genotypes. The novel QR code system proposed in the present study can also be extended to other crops not only for varietal identification but also for germplasm management and trade.


Asunto(s)
Agricultura , Código de Barras del ADN Taxonómico , Oryza/anatomía & histología , Oryza/genética , Dermatoglifia del ADN , Marcadores Genéticos , Genotipo , Fitomejoramiento
8.
Mol Biol Rep ; 47(11): 8615-8627, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33098552

RESUMEN

Rice (Oryza sativa L.) yield enhancement is one of the prime objectives of plant breeders. Elucidation of the inheritance of grain weight, a key yield component trait, is of paramount importance for raising the yield thresholds in rice. In the present investigation, we employed Next-Generation Sequencing based QTL-seq approach to identify major genomic regions associated with grain weight using mapping populations derived from a cross between BPT5204 and MTU3626. QTL-seq analysis identified three grain weight quantitative trait loci (QTL) viz., qGW1 (35-40 Mb), qGW7 (10-18 Mb), and qGW8 (2-5 Mb) on chromosomes 1, 7 and 8, respectively and all are found to be novel. Further, qGW8 was confirmed through conventional QTL mapping in F2, F3 and BC1F2 populations and found to explain the phenotypic variance of 17.88%, 16.70% and 15.00%, respectively, indicating a major QTL for grain weight. Based on previous reports, two candidate genes in the qGW8 QTL were predicted i.e., LOC_Os08g01490 (Cytochrome P450), and LOC_Os08g01680 (WD domain, G-beta repeat domain containing protein) and through in silico analysis they were found to be highly expressed in reproductive organs during different stages of grain development. Here, we have demonstrated that QTL-seq is one of the rapid approaches to uncover novel QTLs controlling complex traits. The candidate genes identified in the present study undoubtedly enhance our understanding of the mechanism and inheritance of the grain weight. These candidate genes can be exploited for yield enhancement after confirmation through complementary studies.


Asunto(s)
Mapeo Cromosómico , Genes de Plantas , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Polimorfismo de Nucleótido Simple
9.
BMC Genomics ; 19(Suppl 10): 935, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30598105

RESUMEN

BACKGROUND: Soil salinity is one of the primary causes of yield decline in rice. Pokkali (Pok) is a highly salt-tolerant landrace, whereas IR29 is a salt-sensitive but widely cultivated genotype. Comparative analysis of these genotypes may offer a better understanding of the salinity tolerance mechanisms in rice. Although most stress-responsive genes are regulated at the transcriptional level, in many cases, changes at the transcriptional level are not always accompanied with the changes in protein abundance, which suggests that the transcriptome needs to be studied in conjunction with the proteome to link the phenotype of stress tolerance or sensitivity. Published reports have largely underscored the importance of transcriptional regulation during salt stress in these genotypes, but the regulation at the translational level has been rarely studied. Using RNA-Seq, we simultaneously analyzed the transcriptome and translatome from control and salt-exposed Pok and IR29 seedlings to unravel molecular insights into gene regulatory mechanisms that differ between these genotypes. RESULTS: Clear differences were evident at both transcriptional and translational levels between the two genotypes even under the control condition. In response to salt stress, 57 differentially expressed genes (DEGs) were commonly upregulated at both transcriptional and translational levels in both genotypes; the overall number of up/downregulated DEGs in IR29 was comparable at both transcriptional and translational levels, whereas in Pok, the number of upregulated DEGs was considerably higher at the translational level (544 DEGs) than at the transcriptional level (219 DEGs); in contrast, the number of downregulated DEGs (58) was significantly less at the translational level than at the transcriptional level (397 DEGs). These results imply that Pok stabilizes mRNAs and also efficiently loads mRNAs onto polysomes for translation during salt stress. CONCLUSION: Under salt stress, Pok is more efficient in maintaining cell wall integrity, detoxifying reactive oxygen species (ROS), translocating molecules and maintaining photosynthesis. The present study confirmed the known salt stress-associated genes and also identified a number of putative new salt-responsive genes. Most importantly, the study revealed that the translational regulation under salinity plays an important role in salt-tolerant Pok, but such regulation was less evident in the salt-sensitive IR29.


Asunto(s)
Perfilación de la Expresión Génica , Genotipo , Oryza/genética , Oryza/fisiología , Biosíntesis de Proteínas , Tolerancia a la Sal/genética , Ontología de Genes , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo
10.
Plant Cell Rep ; 37(4): 677-687, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29387899

RESUMEN

KEY MESSAGE: A major dwarfing region for plant height, asd1, was identified employing the next-generation sequencing-based QTL-Seq approach from a dwarf mutant and is demonstrated to be responsible for the dwarf nature with least penalty on yield in rice. The yield plateauing of modern rice is witnessed since many decades due to the narrow genetic base owing to the usage of a single recessive gene, i.e., semi-dwarf-1 (sd-1) for development of short-statured varieties throughout the world. This calls for the searching of alternate sources for short stature in rice. To this end, we made an attempt to uncover yet another, but valuable dwarfing gene employing next-generation sequencing (NGS)-based QTL-Seq approach. Here, we have identified a major QTL governing plant height on chromosome 1, i.e., alternate semi-dwarf 1 (asd1) from an F2 mapping population derived from a cross between a dwarf mutant, LND384, and a tall landrace, INRC10192. Fine mapping of asd1 region employing sequence-based indel markers delimited the QTL region to 67.51 Kb. The sequencing of the QTL region and gene expression analysis predicted a gene that codes for IWS1 (C-terminus family protein). Furthermore, marker-assisted introgression of the asd1 into tall landrace, INRC10192, reduced its plant height substantially while least affecting the yield and its component traits. Hence, this novel dwarfing gene, asd1, has profound implications in rice breeding.


Asunto(s)
Genes de Plantas/genética , Genoma de Planta/genética , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Oryza/crecimiento & desarrollo , Fenotipo , Fitomejoramiento , Homología de Secuencia de Aminoácido
11.
BMC Plant Biol ; 15: 207, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293787

RESUMEN

BACKGROUND: Basmati rice, originated in the foothills of Himalayas, commands a premium price in the domestic and international markets on account of its unique quality traits. The complex genetic nature of unique traits of Basmati as well as tedious screening methodologies involved in quality testing have been serious constraints to breeding quality Basmati. In the present study, we made an attempt to identify the genomic regions governing unique traits of Basmati rice. RESULTS: A total of 34 Quantitative Trait Loci (QTLs) for 16 economically important traits of Basmati rice were identified employing F(2), F(3) and Recombinant Inbred Line (RIL) mapping populations derived from a cross between Basmati370 (traditional Basmati) and Jaya (semi-dwarf rice). Out of which, 12 QTLs contributing to more than 15 % phenotypic variance were identified and considered as major effect QTLs. Four major effect QTLs coincide with the already known genes viz., sd1, GS3, alk1 and fgr governing plant height, grain size, alkali spreading value and aroma, respectively. For the remaining major QTLs, candidate genes were predicted as auxin response factor for filled grains, soluble starch synthase 3 for chalkiness and VQ domain containing protein for grain breadth and grain weight QTLs, based on the presence of non-synonymous single nucleotide polymorphism (SNPs) that were identified by comparing Basmati genome sequence with that of Nipponbare. CONCLUSIONS: To the best of our knowledge, the current study is the first attempt ever made to carry out genome-wide mapping for the dissection of the genetic basis of economically important traits of Basmati rice. The promising QTLs controlling important traits in Basmati rice, identified in this study, can be used as candidates for future marker-assisted breeding.


Asunto(s)
Mapeo Cromosómico/métodos , Productos Agrícolas/economía , Productos Agrícolas/genética , Oryza/genética , Carácter Cuantitativo Heredable , Amilosa/metabolismo , Segregación Cromosómica/genética , Cruzamientos Genéticos , Ontología de Genes , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Genómica , Endogamia , Escala de Lod , Repeticiones de Microsatélite/genética , Odorantes , Oryza/anatomía & histología , Fenotipo , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Temperatura
12.
J Food Sci Technol ; 52(6): 3187-202, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26028701

RESUMEN

Rice is a staple and widely grown crop endowed with rich genetic diversity. As it is difficult to differentiate seeds of various rice varieties based on visual observation accurately, the harvested seeds and subsequent processed products are highly prone to adulteration with look-alike and low quality seeds by the dishonest traders. To protect the interests of importing countries and consumers, several methods have been employed over the last few decades for unambiguous discrimination of cultivars, accurate quantification of the adulterants, and for determination of cultivated geographical area. With recent advances in biotechnology, DNA based techniques evolved rapidly and proved successful over conventional non-DNA based methods to purge the problem of adulteration at commercial level. In the current review, we made an attempt to summarize the existing methods of adulteration detection and quantification in a comprehensive manner by providing Basmati as a case study to enable the traders to arrive at a quick resolution in choosing the apt method to eliminate the adulteration practice in the global rice industry.

13.
Brief Funct Genomics ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39228011

RESUMEN

Rapidly identifying candidate genes underlying major QTLs is crucial for improving rice (Oryza sativa L.). In this study, we developed a workflow to rapidly prioritize candidate genes underpinning 99 major QTLs governing yield component traits. This workflow integrates multiomics databases, including sequence variation, gene expression, gene ontology, co-expression analysis, and protein-protein interaction. We predicted 206 candidate genes for 99 reported QTLs governing ten economically important yield-contributing traits using this approach. Among these, transcription factors belonging to families of MADS-box, WRKY, helix-loop-helix, TCP, MYB, GRAS, auxin response factor, and nuclear transcription factor Y subunit were promising. Validation of key prioritized candidate genes in contrasting rice genotypes for sequence variation and differential expression identified Leucine-Rich Repeat family protein (LOC_Os03g28270) and cytochrome P450 (LOC_Os02g57290) as candidate genes for the major QTLs GL1 and pl2.1, which govern grain length and panicle length, respectively. In conclusion, this study demonstrates that our workflow can significantly narrow down a large number of annotated genes in a QTL to a very small number of the most probable candidates, achieving approximately a 21-fold reduction. These candidate genes have potential implications for enhancing rice yield.

14.
Antioxidants (Basel) ; 11(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36009219

RESUMEN

Arsenic (As) contamination of the rice agro-ecosystem is a major concern for rice farmers of South East Asia as it imposes a serious threat to human and animal life; thus, there is an unrelenting need to explore the ways by which arsenic stress mitigation could be achieved. In the present investigation, we explore the effect of zinc (Zn2+) supplementation using the seed priming technique for the mitigation of As-induced stress responses in developing rice seedlings. In addition to the physiological and biochemical attributes, we also studied the interactive effect of Zn2+ in regulating As-induced changes by targeting antioxidant enzymes using a computational approach. Our findings suggest that Zn2+ and As can effectively modulate redox homeostasis by limiting ROS production and thereby confer protection against oxidative stress. The results also show that As had a significant impact on seedling growth, which was restored by Zn2+ and also minimized the As uptake. A remarkable outcome of the present investigation is that the varietal difference was significant in determining the efficacy of the Zn2+ priming. Further, based on the findings of computational studies, we observed differences in the surface overlap of the antioxidant target enzymes of rice, indicating that the Zn2+ might have foiled the interaction of As with the enzymes. This is undoubtedly a fascinating approach that interprets the mode of action of the antioxidative enzymes under the metal/metalloid-tempted stress condition in rice by pointing at designated targets. The results of the current investigation are rationally significant and may be the pioneering beginning of an exciting and useful method of integrating physiological and biochemical analysis together with a computational modelling approach for evaluating the stress modulating effects of Zn2+ seed priming on As-induced responses in developing rice seedlings.

15.
Mol Breed ; 40(1): 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31975784

RESUMEN

An attempt was made in the current study to identify the main-effect and co-localized quantitative trait loci (QTLs) for germination and early seedling growth traits under low-temperature stress (LTS) conditions in rice. The plant material used in this study was an early backcross population of 230 introgression lines (ILs) in BCIF7 generation derived from the Weed Tolerant Rice-1 (WTR-1) (as the recipient) and Haoannong (HNG) (as the donor). Genetic analyses of LTS tolerance revealed a total of 27 main-effect quantitative trait loci (M-QTLs) mapped on 12 chromosomes. These QTLs explained more than 10% of phenotypic variance (PV), and average PV of 12.71% while employing 704 high-quality SNP markers. Of these 27 QTLs distributed on 12 chromosomes, 11 were associated with low-temperature germination (LTG), nine with low-temperature germination stress index (LTGS), five with root length stress index (RLSI), and two with biomass stress index (BMSI) QTLs, shoot length stress index (SLSI) and root length stress index (RLSI), seven with seed vigor index (SVI), and single QTL with root length (RL). Among them, five significant major QTLs (qLTG(I) 1 , qLTGS(I) 1-2 , qLTG(I) 5 , qLTGS(I) 5 , and qLTG(I) 7 ) mapped on chromosomes 1, 5, and 7 were associated with LTG and LTGS traits and the PV explained ranged from 16 to 23.3%. The genomic regions of these QTLs were co-localized with two to six QTLs. Most of the QTLs were growth stage-specific and found to harbor QTLs governing multiple traits. Eight chromosomes had more than four QTLs and were clustered together and designated as promising LTS tolerance QTLs (qLTTs), as qLTT 1 , qLTT 2 , qLTT 3 , qLTT 5 , qLTT 6 , qLTT 8 , qLTT 9 , and qLTT 11 . A total of 16 putative candidate genes were identified in the major M-QTLs and co-localized QTL regions distributed on different chromosomes. Overall, these significant genomic regions of M-QTLs are responsible for multiple traits and this suggested that these could serve as the best predictors of LTS tolerance at germination and early seedling growth stages. Furthermore, it is necessary to fine-map these regions and to find functional markers for marker-assisted selection in rice breeding programs for cold tolerance.

16.
Sci Rep ; 9(1): 8192, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160789

RESUMEN

In rice (Oryza sativa L.), during the course of domestication, numerous beneficial alleles remain untapped in the progenitor wild species and landraces. This study aims at uncovering these promising alleles of six key genes influencing the yield, such as DEP1, Ghd7, Gn1a, GS3, qSW5 and sd1 by targeted resequencing of the 200 rice genotypes. In all, 543 nucleotide variations including single nucleotide polymorphisms and insertion and deletion polymorphisms were identified from the targeted genes. Of them, 225 were novel alleles, which identified in the present study only and 91 were beneficial alleles that showed significant association with the yield traits. Besides, we uncovered 128 population-specific alleles with indica being the highest of 79 alleles. The neutrality tests revealed that pleiotropic gene, Ghd7 and major grain size contributing gene, GS3 showed positive and balanced selection, respectively during the domestication. Further, the haplotype analysis revealed that some of the rice genotypes found to have rare haplotypes, especially the high yielding variety, BPT1768 has showed maximum of three genes such as Gn1a-8, qSW5-12 and GS3-29. The rice varieties with novel and beneficial alleles along with the rare haplotypes identified in the present study could be of immense value for yield improvement in the rice breeding programs.


Asunto(s)
Alelos , Genes de Plantas , Oryza/genética , Cromosomas de las Plantas , Variación Genética , Genotipo , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
17.
J Agric Food Chem ; 55(20): 8112-7, 2007 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17867634

RESUMEN

Microsatellite markers are employed for genotyping of Basmati varieties and assaying purity of market samples. However, employment of diverse electrophoresis techniques across laboratories has resulted in inconsistent allele sizes, creating doubts about the suitability of the assay. This study evaluated agarose gel electrophoresis, slab gel electrophoresis, and capillary electrophoresis techniques for their efficiency in the detection and quantification of adulteration in Basmati samples. Comparative analysis across 8 microsatellite loci in 12 rice varieties demonstrated that the capillary electrophoresis method showed less error (+/-0.73 bp) in the estimation of allele sizes compared to slab gel (+/-1.59 bp) and agarose gel (+/-8.03 bp) electrophoretic methods. Capillary electrophoresis showed greater reproducibility (<0.5 bp deviation) compared to slab gel (1 bp) and agarose (>3 bp) based methods. Capillary electrophoresis was significantly superior in quantification of the adulterant, with a mean error of +/-3.91% in comparison to slab gel (+/-6.09%). Lack of accuracy and consistency of the slab gel and agarose electrophoretic methods warrants the employment of capillary electrophoresis for Basmati rice purity assays.


Asunto(s)
Electroforesis Capilar , Contaminación de Alimentos/análisis , Repeticiones de Microsatélite , Oryza/genética , ADN de Plantas/análisis , Electroforesis en Gel de Agar , Electroforesis en Gel de Poliacrilamida , Oryza/química , Reacción en Cadena de la Polimerasa , Semillas/química , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA