Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(10): 7167-7180, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32338881

RESUMEN

A series of asymmetric and potentially bidentate amino alcohols and amino fluoro alcohols (RNOH) having a different number of methyl/trifluoromethyl substituents at the α-carbon atom, [HOC(R1)(R2)CH2NMe2] (R1 = R2 = H (dmaeH); R1 = H, R2 = CH3 (dmapH); R1 = R2 = CH3 (dmampH); R1 = H, R2 = CF3 (F-dmapH); R1 = R2 = CF3 (F-dmampH)) have been used to develop new monomeric and heteroleptic tin(IV) amino(fluoro)alkoxides [Sn(OR)2(ORN)2] (R = Et, Pri, But). These new complexes, which were thoroughly characterized by spectroscopy (IR and multinuclei NMR (1H, 13C, 19F, and 119Sn)) as well as single-crystal X-ray studies on representative samples, were investigated for their thermal behavior to determine their suitability as MOCVD precursors for the deposition of metal oxide thin films. The two most suitable compounds, [Sn(OBut)2(dmamp)2] and [Sn(OBut)2(F-dmamp)2], were used in a direct liquid injection chemical vapor deposition (DLI-CVD) process to deposit undoped SnO2 and F-doped SnO2 thin films, respectively, on silicon and quartz substrates. Film growth rates at different temperatures (from 400 to 700 °C), film thickness, crystalline quality, and surface morphology were investigated. The films deposited on quartz showed high transparency (above 80%) in the visible region and low carbon contamination on the surface (11-13% from XPS), which could easily be removed completely with 2 min of Ar+ sputtering.

2.
Phys Chem Chem Phys ; 22(23): 13008-13016, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32478345

RESUMEN

Rutile is the most common and stable polymorph form of titanium oxide TiO2 at all temperatures. The doping of rutile TiO2 with a small amount of niobium is reknown for being responsible for a large increase of the electrical conductivity by several orders of magnitude, broadening its technological interest towards new emerging fields such as the thermoelectric conversion of waste heat. The electronic conduction has been found to be of a polaronic nature with strongly localized charges around the Ti3+ centers while, on the other side, the relatively high value of the thermal conductivity implies the existence of lattice heat carriers, i.e. phonons, with large mean free paths which makes the nanostructuration relevant for optimizing the thermoelectric efficiency. Here, the use of a high-pressure and high-temperature sintering technique has allowed to vary the grain size in rutile TiO2 pellets from 300 to 170 nm, leading to a significant reduction of the lattice thermal conductivity. The thermoelectric properties (electrical conductivity, Seebeck coefficient and thermal conductivity) of Nb-doped rutile nanostructured ceramics, namely NbxTi1-xO2 with x varying from 1 to 5%, are reported from room temperature to ∼900 K. With the incorporation of Nb, an optimum in the thermoelectric properties together with an anomaly on the tetragonal lattice constant c are observed for a concentration of ∼2.85%, which might be the fingerprint of the formation of short Nb dimers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA