Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 32(2): 1227-1237, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34327581

RESUMEN

OBJECTIVES: To assess task-based image quality for two abdominal protocols on various CT scanners. To establish a relationship between diagnostic reference levels (DRLs) and task-based image quality. METHODS: A protocol for the detection of focal liver lesions was used to scan an anthropomorphic abdominal phantom containing 8- and 5-mm low-contrast (20 HU) spheres at five CTDIvol levels (4, 8, 12, 16, and 20 mGy) on 12 CTs. Another phantom with high-contrast calcium targets (200 HU) was scanned at 2, 4, 6, 10, and 15 mGy using a renal stones protocol on the same CTs. To assess the detectability, a channelized Hotelling observer was used for low-contrast targets and a non-prewhitening observer with an eye filter was used for high contrast targets. The area under the ROC curve and signal to noise ratio were used as figures of merit. RESULTS: For the detection of 8-mm spheres, the image quality reached a high level (mean AUC over all CTs higher than 0.95) at 11 mGy. For the detection of 5-mm spheres, the AUC never reached a high level of image quality. Variability between CTs was found, especially at low dose levels. For the search of renal stones, the AUC was nearly maximal even for the lowest dose level. CONCLUSIONS: Comparable task-based image quality cannot be reached at the same dose level on all CT scanners. This variability implies the need for scanner-specific dose optimization. KEY POINTS: • There is an image quality variability for subtle low-contrast lesion detection in the clinically used dose range. • Diagnostic reference levels were linked with task-based image quality metrics. • There is a need for specific dose optimization for each CT scanner and clinical protocol.


Asunto(s)
Niveles de Referencia para Diagnóstico , Tomografía Computarizada por Rayos X , Algoritmos , Humanos , Fantasmas de Imagen , Dosis de Radiación , Relación Señal-Ruido , Tomógrafos Computarizados por Rayos X
2.
J Cardiovasc Magn Reson ; 21(1): 11, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30728035

RESUMEN

BACKGROUND: Our objectives were first to determine the optimal coronary computed tomography angiography (CTA) protocol for the quantification and detection of simulated coronary artery cross-sectional area (CSA) differences in vitro, and secondly to quantitatively compare the performance of the optimized CTA protocol with a previously validated radial coronary cardiovascular magnetic resonance (CMR) technique. METHODS: 256-multidetector CTA and radial coronary CMR were used to obtain images of a custom in vitro resolution phantom simulating a range of physiological responses of coronary arteries to stress. CSAs were automatically quantified and compared with known nominal values to determine the accuracy, precision, signal-to-noise ratio (SNR), and circularity of CSA measurements, as well as the limit of detection (LOD) of CSA differences. Various iodine concentrations, radiation dose levels, tube potentials, and iterative image reconstruction algorithms (ASiR-V) were investigated to determine the optimal CTA protocol. The performance of the optimized CTA protocol was then compared with a radial coronary CMR method previously developed for endothelial function assessment under both static and moving conditions. RESULTS: The iodine concentration, dose level, tube potential, and reconstruction algorithm all had significant effects (all p <  0.001) on the accuracy, precision, LOD, SNR, and circularity of CSA measurements with CTA. The best precision, LOD, SNR, and circularity with CTA were achieved with 6% iodine, 20 mGy, 100 kVp, and 90% ASiR-V. Compared with the optimized CTA protocol under static conditions, radial coronary CMR was less accurate (- 0.91 ± 0.13 mm2 vs. -0.35 ± 0.04 mm2, p <  0.001), but more precise (0.08 ± 0.02 mm2 vs. 0.21 ± 0.02 mm2, p <  0.001), and enabled the detection of significantly smaller CSA differences (0.16 ± 0.06 mm2 vs. 0.52 ± 0.04 mm2; p <  0.001; corresponding to CSA percentage differences of 2.3 ± 0.8% vs. 7.4 ± 0.6% for a 3-mm baseline diameter). The same results held true under moving conditions as CSA measurements with CMR were less affected by motion. CONCLUSIONS: Radial coronary CMR was more precise and outperformed CTA for the specific task of detecting small CSA differences in vitro, and was able to reliably identify CSA changes an order of magnitude smaller than those reported for healthy physiological vasomotor responses of proximal coronary arteries. However, CTA yielded more accurate CSA measurements, which may prove useful in other clinical scenarios, such as coronary artery stenosis assessment.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria/métodos , Vasos Coronarios/diagnóstico por imagen , Endotelio Vascular/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía Computarizada Multidetector , Angiografía por Tomografía Computarizada/instrumentación , Medios de Contraste , Angiografía Coronaria/instrumentación , Circulación Coronaria , Humanos , Límite de Detección , Imagen por Resonancia Magnética/instrumentación , Meglumina , Tomografía Computarizada Multidetector/instrumentación , Compuestos Organometálicos , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Vasodilatación
3.
Eur Radiol ; 28(12): 5203-5210, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29858638

RESUMEN

OBJECTIVE: We investigated the variability in diagnostic information inherent in computed tomography (CT) images acquired at 68 different CT units, with the selected acquisition protocols aiming to answer the same clinical question. METHODS: An anthropomorphic abdominal phantom with two optional rings was scanned on 68 CT systems from 62 centres using the local clinical acquisition parameters of the portal venous phase for the detection of focal liver lesions. Low-contrast detectability (LCD) was assessed objectively with channelised Hotelling observer (CHO) using the receiver operating characteristic (ROC) paradigm. For each lesion size, the area under the ROC curve (AUC) was calculated and considered as a figure of merit. The volume computed tomography dose index (CTDIvol) was used to indicate radiation dose exposure. RESULTS: The median CTDIvol used was 5.8 mGy, 10.5 mGy and 16.3 mGy for the small, medium and large phantoms, respectively. The median AUC obtained from clinical CT protocols was 0.96, 0.90 and 0.83 for the small, medium and large phantoms, respectively. CONCLUSIONS: Our study used a model observer to highlight the difference in image quality levels when dealing with the same clinical question. This difference was important and increased with growing phantom size, which generated large variations in patient exposure. In the end, a standardisation initiative may be launched to ensure comparable diagnostic information for well-defined clinical questions. The image quality requirements, related to the clinical question to be answered, should be the starting point of patient dose optimisation. KEY POINTS: • Model observers enable to assess image quality objectively based on clinical tasks. • Objective image quality assessment should always include several patient sizes. • Clinical diagnostic image quality should be the starting point for patient dose optimisation. • Dose optimisation by applying DRLs only is insufficient for ensuring clinical requirements.


Asunto(s)
Abdomen/diagnóstico por imagen , Fantasmas de Imagen , Exposición a la Radiación/análisis , Tomografía Computarizada por Rayos X/métodos , Humanos , Curva ROC , Dosis de Radiación
4.
Semin Musculoskelet Radiol ; 19(5): 422-30, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26696080

RESUMEN

Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.


Asunto(s)
Enfermedades Óseas/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedades Musculares/diagnóstico por imagen , Sistema Musculoesquelético/diagnóstico por imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Humanos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
5.
Semin Musculoskelet Radiol ; 19(5): 415-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26696079

RESUMEN

Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.


Asunto(s)
Enfermedades Óseas/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedades Musculares/diagnóstico por imagen , Sistema Musculoesquelético/diagnóstico por imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Humanos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
6.
Semin Musculoskelet Radiol ; 19(5): 438-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26696082

RESUMEN

In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.


Asunto(s)
Enfermedades Óseas/diagnóstico por imagen , Enfermedades Musculares/diagnóstico por imagen , Sistema Musculoesquelético/diagnóstico por imagen , Imagen Radiográfica por Emisión de Doble Fotón , Tomografía Computarizada por Rayos X , Humanos
7.
Semin Musculoskelet Radiol ; 19(5): 431-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26696081

RESUMEN

In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.


Asunto(s)
Sistema Musculoesquelético/diagnóstico por imagen , Dosis de Radiación , Imagen Radiográfica por Emisión de Doble Fotón , Tomografía Computarizada por Rayos X , Artefactos , Humanos , Metales
8.
AJR Am J Roentgenol ; 203(6): W665-73, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25415733

RESUMEN

OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.


Asunto(s)
Artrografía/métodos , Interpretación Estadística de Datos , Articulación de la Cadera/diagnóstico por imagen , Artropatías/diagnóstico por imagen , Tomografía Computarizada Multidetector/métodos , Dosis de Radiación , Protección Radiológica/métodos , Adulto , Anciano , Algoritmos , Estudios de Factibilidad , Humanos , Persona de Mediana Edad , Intensificación de Imagen Radiográfica , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Acta Radiol ; 55(3): 335-44, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23897308

RESUMEN

BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.


Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Tomografía Computarizada Multidetector/métodos , Dolor de Cuello/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Dosis de Radiación , Relación Señal-Ruido
10.
BMC Med Imaging ; 13: 22, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23895057

RESUMEN

BACKGROUND: The frequency of CT procedures has registered a significant increase over the last decade, which led at the international level to an increasing concern on the radiological risk associated with the use of CT especially in paediatrics. This work aimed at investigating the use of computed tomography in Switzerland, following the evolution of CT frequency and dose data over a decade and comparing it to data reported in other countries. METHODS: The frequency and dose data related to CT are obtained by means of a nationwide survey. National frequencies were established by projecting the collected data, using the ratio of the number of CT units belonging to the respondents to the total number of CT units in the country. The effective doses per examination were collected during an auditing campaign. RESULTS: In 2008 about 0.8 Million CT procedures (~100 CT examinations/1000 population) were performed in the country, leading to a collective effective dose of more than 6000 man.Sv (0.8 mSv/caput). In a decade the frequency of CT examinations averaged over the population and the associated average effective dose per caput increased by a factor of 2.2 and 2.9 respectively. CONCLUSIONS: Although the contribution of CT to the total medical X-rays is 6% in terms of the frequency, it represents 68% in terms of the collective effective dose. These results are comparable to those reported in a number of countries in Europe and America with similar health level.


Asunto(s)
Carga Corporal (Radioterapia) , Exposición a Riesgos Ambientales/estadística & datos numéricos , Dosis de Radiación , Radiometría/estadística & datos numéricos , Tomografía Computarizada por Rayos X/estadística & datos numéricos , Humanos , Medición de Riesgo , Suiza/epidemiología
11.
Pediatr Radiol ; 43(5): 558-67, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23224105

RESUMEN

BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.


Asunto(s)
Algoritmos , Fibrosis Quística/diagnóstico por imagen , Modelos Biológicos , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Niño , Simulación por Computador , Femenino , Humanos , Masculino , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Skeletal Radiol ; 42(7): 937-45, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23359034

RESUMEN

OBJECTIVE: To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). MATERIALS AND METHODS: Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. RESULTS: For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. CONCLUSION: LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %.


Asunto(s)
Algoritmos , Vértebras Cervicales/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Dosis de Radiación , Protección Radiológica/métodos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido , Método Simple Ciego , Adulto Joven
13.
Eur J Nucl Med Mol Imaging ; 39(6): 1037-47, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22398957

RESUMEN

PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine.


Asunto(s)
Circulación Coronaria , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Rubidio , Agua , Adulto , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Imagen de Perfusión Miocárdica , Radioisótopos de Oxígeno , Reproducibilidad de los Resultados
14.
Pediatr Radiol ; 41(9): 1154-64, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21717165

RESUMEN

BACKGROUND: Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. OBJECTIVE: To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. MATERIALS AND METHODS: Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. RESULTS: The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. CONCLUSION: Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Cardiopatías/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Niño , Preescolar , Femenino , Cardiopatías/congénito , Humanos , Lactante , Recién Nacido , Masculino , Fantasmas de Imagen/normas , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/normas
15.
Radiat Prot Dosimetry ; 195(3-4): 289-295, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33647105

RESUMEN

Nationwide surveys on radiation dose to the population from medical imaging are recommended in order to follow trends in population exposure. The goal of the 2018 survey was to investigate the current exposure. The invoice coding information was collected in five university hospitals and large clinics. To improve the estimation of the effective dose delivered in computed tomography (CT), we collected dose data from different Dose Archiving Communication Systems. On average, we found that 1.2 radiological examinations per year and per inhabitant were performed. Dental radiography was the most frequent examination (48% of all the X-ray examinations), followed by conventional radiography (36%) and CT (11%). The average annual effective dose was estimated to be 1.48 mSv per inhabitant, with CT representing 64% of that dose. Our results show that the exposure of the Swiss population from medical imaging has remained stable since 2013, despite a 15% increase in the number of CT examinations.


Asunto(s)
Pruebas Diagnósticas de Rutina , Tomografía Computarizada por Rayos X , Humanos , Dosis de Radiación , Radiografía , Rayos X
16.
J Med Imaging (Bellingham) ; 7(4): 045501, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32743016

RESUMEN

Purpose: Visual search using volumetric images is becoming the standard in medical imaging. However, we do not fully understand how eye movement strategies mediate diagnostic performance. A recent study on computed tomography (CT) images showed that the search strategies of radiologists could be classified based on saccade amplitudes and cross-quadrant eye movements [eye movement index (EMI)] into two categories: drillers and scanners. Approach: We investigate how the number of times a radiologist scrolls in a given direction during analysis of the images (number of courses) could add a supplementary variable to use to characterize search strategies. We used a set of 15 normal liver CT images in which we inserted 1 to 5 hypodense metastases of two different signal contrast amplitudes. Twenty radiologists were asked to search for the metastases while their eye-gaze was recorded by an eye-tracker device (EyeLink1000, SR Research Ltd., Mississauga, Ontario, Canada). Results: We found that categorizing radiologists based on the number of courses (rather than EMI) could better predict differences in decision times, percentage of image covered, and search error rates. Radiologists with a larger number of courses covered more volume in more time, found more metastases, and made fewer search errors than those with a lower number of courses. Our results suggest that the traditional definition of drillers and scanners could be expanded to include scrolling behavior. Drillers could be defined as scrolling back and forth through the image stack, each time exploring a different area on each image (low EMI and high number of courses). Scanners could be defined as scrolling progressively through the stack of images and focusing on different areas within each image slice (high EMI and low number of courses). Conclusions: Together, our results further enhance the understanding of how radiologists investigate three-dimensional volumes and may improve how to teach effective reading strategies to radiology residents.

17.
Phys Med ; 76: 28-37, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32574999

RESUMEN

PURPOSE: We aimed to thoroughly characterize image quality of a novel deep learning image reconstruction (DLIR), and investigate its potential for dose reduction in abdominal CT in comparison with filtered back-projection (FBP) and a partial model-based iterative reconstruction (ASiR-V). METHODS: We scanned a phantom at three dose levels: regular (7 mGy), low (3 mGy) and ultra-low (1 mGy). Images were reconstructed using DLIR (low, medium and high levels) and ASiR-V (0% = FBP, 50% and 100%). Noise and contrast-dependent spatial resolution were characterized by computing noise power spectra and target transfer functions, respectively. Detectability indexes of simulated acute appendicitis or colonic diverticulitis (low contrast), and calcium-containing urinary stones (high contrast) (|ΔHU| = 50 and 500, respectively) were calculated using the nonprewhitening with eye filter model observer. RESULTS: At all dose levels, increasing DLIR and ASiR-V levels both markedly decreased noise magnitude compared with FBP, with DLIR low and medium maintaining noise texture overall. For both low- and high-contrast spatial resolution, DLIR not only maintained, but even slightly enhanced spatial resolution in comparison with FBP across all dose levels. Conversely, increasing ASiR-V impaired low-contrast spatial resolution compared with FBP. Overall, DLIR outperformed ASiR-V in all simulated clinical scenarios. For both low- and high-contrast diagnostic tasks, increasing DLIR substantially enhanced detectability at any dose and contrast levels for any simulated lesion size. CONCLUSIONS: Unlike ASiR-V, DLIR substantially reduces noise while maintaining noise texture and slightly enhancing spatial resolution overall. DLIR outperforms ASiR-V by enabling higher detectability of both low- and high-contrast simulated abdominal lesions across all investigated dose levels.


Asunto(s)
Aprendizaje Profundo , Interpretación de Imagen Radiográfica Asistida por Computador , Algoritmos , Procesamiento de Imagen Asistido por Computador , Dosis de Radiación , Tomografía Computarizada por Rayos X
18.
EJNMMI Phys ; 7(1): 1, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907664

RESUMEN

BACKGROUND: We assessed and compared image quality obtained with clinical 18F-FDG whole-body oncologic PET protocols used in three different, state-of-the-art digital PET/CT and two conventional PMT-based PET/CT devices. Our goal was to evaluate an  improved trade-off between administered activity (patient dose exposure/signal-to-noise ratio) and acquisition time (patient comfort) while preserving diagnostic information achievable with the recently introduced digital detector technology compared to previous analogue PET technology. METHODS: We performed list-mode (LM) PET acquisitions using a NEMA/IEC NU2 phantom, with activity concentrations of 5 kBq/mL and 25 kBq/mL for the background (9.5 L) and sphere inserts, respectively. For each device, reconstructions were obtained varying the image statistics (10, 30, 60, 90, 120, 180, and 300 s from LM data) and the number of iterations (range 1 to 10) in addition to the employed local clinical protocol setup. We measured for each reconstructed dataset: the quantitative cross-calibration, the image noise on the uniform background assessed by the coefficient of variation (COV), and the recovery coefficients (RCs) evaluated in the hot spheres. Additionally, we compared the characteristic time-activity-product (TAP) that is the product of scan time per bed position × mass-activity administered (in min·MBq/kg) across datasets. RESULTS: Good system cross-calibration was obtained for all tested datasets with < 6% deviation from the expected value was observed. For all clinical protocol settings, image noise was compatible with clinical interpretation (COV < 15%). Digital PET showed an improved background signal-to-noise ratio as compared to conventional PMT-based PET. RCs were comparable between digital and PMT-based PET datasets. Compared to PMT-based PET, digital systems provided comparable image quality with lower TAP (from ~ 40% less and up to 70% less). CONCLUSIONS: This study compared the achievable clinical image quality in three state-of-the-art digital PET/CT devices (from different vendors) as well as in two conventional PMT-based PET. Reported results show that a comparable image quality is achievable with a TAP reduction of ~ 40% in digital PET. This could lead to a significant reduction of the administered mass-activity and/or scan time with direct benefits in terms of dose exposure and patient comfort.

19.
Dentomaxillofac Radiol ; 49(6): 20190468, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267774

RESUMEN

OBJECTIVES: The aim of this study was to establish diagnostic reference levels (DRLs) in the field of dental maxillofacial and ear-nose-throat (ENT) practices using cone beam CT (CBCT) in Switzerland. METHODS: A questionnaire was sent to owners of CBCTs in Switzerland; to a total of 612 institutions. The answers were analyzed for each indication, provided that enough data were available. The DRLs were defined as the 75th percentile of air kerma product distribution (PKA). RESULTS: 227 answers were collected (38% of all centers). Third quartile of PKA values were obtained for five dental indications: 662 mGy cm² for wisdom tooth, 683 mGy cm² for single tooth implant treatment, 542 mGy cm² for tooth position anomalies, 569 mGy cm² for pathological dentoalveolar modifications, and 639 mGy cm² for endodontics. The standard field of view (FOV) size of 5 cm in diameter x 5 cm in height was proposed. CONCLUSIONS: Large ranges of FOV and PKA were found for a given indication, demonstrating the importance of establishing DRLs as well as FOV recommendations in view of optimizing the present practice. For now, only DRLs for dental and maxillofacial could be defined; because of a lack of ENT data, no DRL values for ENT practices could be derived from this survey.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Dosis de Radiación , Valores de Referencia , Encuestas y Cuestionarios , Suiza
20.
Eur Radiol ; 19(2): 446-54, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18797875

RESUMEN

The aim of this study was to evaluate a low-dose CT with oral contrast medium (LDCT) for the diagnosis of acute appendicitis and compare its performance with standard-dose i.v. contrast-enhanced CT (standard CT) according to patients' BMIs. Eighty-six consecutive patients admitted with suspicion of acute appendicitis underwent LDCT (30 mAs), followed by standard CT (180 mAs). Both examinations were reviewed by two experienced radiologists for direct and indirect signs of appendicitis. Clinical and surgical follow-up was considered as the reference standard. Appendicitis was confirmed by surgery in 37 (43%) of the 86 patients. Twenty-nine (34%) patients eventually had an alternative discharge diagnosis to explain their abdominal pain. Clinical and biological follow-up was uneventful in 20 (23%) patients. LDCT and standard CT had the same sensitivity (100%, 33/33) and specificity (98%, 45/46) to diagnose appendicitis in patients with a body mass index (BMI) >or= 18.5. In slim patients (BMI<18.5), sensitivity to diagnose appendicitis was 50% (2/4) for LDCT and 100% (4/4) for standard CT, while specificity was identical for both techniques (67%, 2/3). LDCT may play a role in the diagnostic workup of patients with a BMI >or= 18.5.


Asunto(s)
Apendicitis/diagnóstico por imagen , Medios de Contraste/uso terapéutico , Dolor Abdominal , Enfermedad Aguda , Administración Oral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Apendicitis/diagnóstico , Medios de Contraste/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dosis de Radiación , Radiografía , Cintigrafía , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA