Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(9): 248, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578596

RESUMEN

Human erythroleukemic K562 cells represent the prototypical cell culture model of chronic myeloid leukemia (CML). The cells are pseudo-triploid and positive for the Philadelphia chromosome. Therefore, K562 cells have been widely used for investigating the BCR/ABL1 oncogene and the tyrosine kinase inhibitor, imatinib-mesylate. Further, K562 cells overexpress transferrin receptors (TfR) and have been used as a model for targeting cytotoxic therapies, via receptor-mediated endocytosis. Here, we have characterized K562 cells focusing on the karyotype of cells in prolonged culture, regulation of expression of TfR in wildtype (WT) and doxorubicin-resistant cells, and responses to histone deacetylase inhibition (HDACi). Karyotype analysis indicates novel chromosomes and gene expression analysis suggests a shift of cultured K562 cells away from patient-derived leukemic cells. We confirm the high expression of TfR on K562 cells using immunofluorescence and cell-surface receptor binding radioassays. Importantly, high TfR expression is observed in patient-derived cells, and we highlight the persistent expression of TfR following doxorubicin acquired resistance. Epigenetic analysis indicates that permissive histone acetylation and methylation at the promoter region regulates the transcription of TfR in K562 cells. Finally, we show relatively high expression of HDAC enzymes in K562 cells and demonstrate the chemotoxic effects of HDACi, using the FDA-approved hydroxamic acid, vorinostat. Together with a description of morphology, infrared spectral analysis, and examination of metabolic properties, we provide a comprehensive characterization of K562 cells. Overall, K562 cell culture systems remain widely used for the investigation of novel therapeutics for CML, which is particularly important in cases of imatinib-mesylate resistance.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Células K562 , Proteínas de Fusión bcr-abl/genética , Transferrina , Pirimidinas/farmacología , Resistencia a Antineoplásicos/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Histona Desacetilasas/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Receptores de Transferrina/genética , Cromosomas/metabolismo , Mesilatos/farmacología , Apoptosis
2.
Molecules ; 29(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124908

RESUMEN

In a landmark study, oleocanthal (OLC), a major phenolic in extra virgin olive oil (EVOO), was found to possess anti-inflammatory activity similar to ibuprofen, involving inhibition of cyclooxygenase (COX) enzymes. EVOO is a rich source of bioactive compounds including fatty acids and phenolics; however, the biological activities of only a small subset of compounds associated with Olea europaea have been explored. Here, the OliveNetTM library (consisting of over 600 compounds) was utilized to investigate olive-derived compounds as potential modulators of the arachidonic acid pathway. Our first aim was to perform enzymatic assays to evaluate the inhibitory activity of a selection of phenolic compounds and fatty acids against COX isoforms (COX-1 and COX-2) and 15-lipoxygenase (15-LOX). Olive compounds were found to inhibit COX isoforms, with minimal activity against 15-LOX. Subsequent molecular docking indicated that the olive compounds possess strong binding affinities for the active site of COX isoforms, and molecular dynamics (MD) simulations confirmed the stability of binding. Moreover, olive compounds were predicted to have favorable pharmacokinetic properties, including a readiness to cross biological membranes as highlighted by steered MD simulations and umbrella sampling. Importantly, olive compounds including OLC were identified as non-inhibitors of the human ether-à-go-go-related gene (hERG) channel based on patch clamp assays. Overall, this study extends our understanding of the bioactivity of Olea-europaea-derived compounds, many of which are now known to be, at least in part, accountable for the beneficial health effects of the Mediterranean diet.


Asunto(s)
Antiinflamatorios , Inhibidores de la Ciclooxigenasa , Simulación del Acoplamiento Molecular , Olea , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Olea/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Humanos , Simulación de Dinámica Molecular , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/química , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/química , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/química , Aceite de Oliva/química , Prostaglandina-Endoperóxido Sintasas/metabolismo , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Monoterpenos Ciclopentánicos , Simulación por Computador , Aldehídos
3.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893322

RESUMEN

The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein-peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Olea , Fenoles , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Olea/química , Fenoles/farmacología , Fenoles/química , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Depresión/tratamiento farmacológico , Aceite de Oliva/química , Simulación por Computador
4.
Cell Mol Life Sci ; 79(11): 579, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319916

RESUMEN

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.


Asunto(s)
Antioxidantes , Hipersensibilidad , Ratones , Humanos , Animales , Leucocitos Mononucleares , Ovalbúmina , Epigénesis Genética , Antiinflamatorios
5.
Chem Phys Lett ; 788: 139294, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34961797

RESUMEN

The SARS-CoV-2 papain-like (PLpro) protease is essential for viral replication. We investigated potential antiviral effects of hypericin relative to the well-known noncovalent PLpro inhibitor GRL-0617. Molecular dynamics and PELE Monte Carlo simulations highlight favourable binding of hypericin and GRL-0617 to the naphthalene binding pocket of PLpro. Although not potent as GRL-0617 (45.8 vs 1.6 µM for protease activity, respectively), in vitro fluorogenic enzymatic assays with hypericin show concentration-dependent inhibition of both PLpro protease and deubiquitinating activities. Given its use in supplementations and the FDA conditional approval of a synthetic version, further evaluation of hypericin as a potential SARS-CoV-2 antiviral is warranted.

6.
Mol Biol Rep ; 42(4): 825-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25253100

RESUMEN

It has been about nine decades since the proposal of Otto Warburg on the metabolism of cancer cells. Unlike normal cells which undergo glycolysis and oxidative phosphorylation in the presence of oxygen, proliferating and cancer cells exhibit an increased uptake of glucose and increased rate of glycolysis and predominantly undergo lactic acid fermentation. Whether this phenomenon is the consequence of genetic dysregulation in cancer or is the cause of cancer still remains unknown. However, there is certainly a strong link between the genetic factors, epigenetic modulation, cancer immunosurveillance and the Warburg effect, which will be discussed in this review. Dichloroacetate and 3-bromopyruvate are among the substances that have been studied as potential cancer therapies. With our expanding knowledge of cellular metabolism, therapies targeting the Warburg effect appear very promising. This review discusses different aspects of these emerging therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Glucólisis , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Ácido Dicloroacético/uso terapéutico , Epigénesis Genética , Genes , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Piruvatos/uso terapéutico
7.
Mol Biol Rep ; 42(4): 791-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25270249

RESUMEN

Life expectancy has been examined from a variety of perspectives in recent history. Epidemiology is one perspective which examines causes of morbidity and mortality at the population level. Over the past few 100 years there have been dramatic shifts in the major causes of death and expected life length. This change has suffered from inconsistency across time and space with vast inequalities observed between population groups. In current focus is the challenge of rising non-communicable diseases (NCD), such as cardiovascular disease and type 2 diabetes mellitus. In the search to discover methods to combat the rising incidence of these diseases, a number of new theories on the development of morbidity have arisen. A pertinent example is the hypothesis published by David Barker in 1995 which postulates the prenatal and early developmental origin of adult onset disease, and highlights the importance of the maternal environment. This theory has been subject to criticism however it has gradually gained acceptance. In addition, the relatively new field of epigenetics is contributing evidence in support of the theory. This review aims to explore the implication and limitations of the developmental origin hypothesis, via an historical perspective, in order to enhance understanding of the increasing incidence of NCDs, and facilitate an improvement in planning public health policy.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Epigénesis Genética , Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Incidencia , Morbilidad
8.
Mol Biol Rep ; 42(4): 835-40, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25670247

RESUMEN

Although oncogenetics remains a critical component of cancer biology and therapeutic research, recent interest has been taken towards the non-genetic features of tumour development and progression, such as cancer metabolism. Specifically, it has been observed that tumour cells are inclined to preferentially undergo glycolysis despite presence of adequate oxygen. First reported by Otto Warburg in the 1920s, and now termed the 'Warburg effect', this aberrant metabolism has become of particular interest due to the prevalence of the fermentation phenotype in a variety of cancers studied. Consequently, this phenotype has proven to play a pivotal role in cancer proliferation. As such Warburg's observations are now being integrated within the modern paradigms of cancer and in this review we explore the role of lactate as an insidious metabolite due to the Warburg effect.


Asunto(s)
Ácido Láctico/metabolismo , Neoplasias/metabolismo , Glucólisis , Humanos , Neoplasias/fisiopatología
9.
Mol Biol Rep ; 42(4): 819-23, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25672512

RESUMEN

In differentiated normal cells, the conventional route of glucose metabolism involves glycolysis, followed by the citric acid cycle and electron transport chain to generate usable energy in the form of adenosine triphosphate (ATP). This occurs in the presence of oxygen. In hypoxic conditions, normal cells undergo anaerobic glycolysis to yield significantly less energy producing lactate as a product. As first highlighted in the 1920s by Otto Warburg, the metabolism exhibited by tumor cells involves an increased rate of aerobic glycolysis, known as the Warburg effect. In aerobic glycolysis, pyruvate molecules yielded from glycolysis are converted into fewer molecules of ATP even in the presence of oxygen. Evidence indicates that the reasons as to why tumor cells undergo aerobic glycolysis include: (1) the shift in priority to accumulate biomass rather than energy production, (2) the evasion of apoptosis as fewer reactive oxygen species are released by the mitochondria and (3) the production of lactate to further fuel growth of tumors. In this mini-review we discuss emerging molecular aspects of cancer metabolism and the Warburg effect. Aspects of the Warburg effect are analyzed in the context of the established hallmarks of cancer including the role of oncogenes and tumor suppressor genes.


Asunto(s)
Glucólisis , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Apoptosis , Genes Relacionados con las Neoplasias , Humanos , Mitocondrias/metabolismo , Neoplasias/genética , Ácido Pirúvico/metabolismo , Especies Reactivas de Oxígeno
10.
Mol Biol Rep ; 42(4): 841-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25689954

RESUMEN

Cancer cells have been shown to have altered metabolism when compared to normal non-malignant cells. The Warburg effect describes a phenomenon in which cancer cells preferentially metabolize glucose by glycolysis, producing lactate as an end product, despite being the presence of oxygen. The phenomenon was first described by Otto Warburg in the 1920s, and has resurfaced as a controversial theory, with both supportive and opposing arguments. The biochemical aspects of the Warburg effect outline a strong explanation for the cause of cancer cell proliferation, by providing the biological requirements for a cell to grow. Studies have shown that pathways such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) as well as hypoxia inducible factor-1 (HIF-1) are central regulators of glycolysis, cancer metabolism and cancer cell proliferation. Studies have shown that PI3K signaling pathways have a role in many cellular processes such as metabolism, inflammation, cell survival, motility and cancer progression. Herein, the cellular aspects of the PI3K pathway are described, as well as the influence HIF has on cancer cell metabolism. HIF-1 activation has been related to angiogenesis, erythropoiesis and modulation of key enzymes involved in aerobic glycolysis, thereby modulating key processes required for the Warburg effect. In this review we discuss the molecular aspects of the Warburg effect with a particular emphasis on the role of the HIF-1 and the PI3K pathway.


Asunto(s)
Glucólisis , Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Proliferación Celular , Humanos , Mamíferos , Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
Hell J Nucl Med ; 17 Suppl 1: 11-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24392461

RESUMEN

L-sulforaphane (LSF) is a natural isothiocyanate found in cruciferous vegetables particularly broccoli. LSF has been identified as a potent antioxidant and anti-cancer agent and is widely known to regulate phase II detoxifying enzymes and induce cell cycle arrest or apoptosis in malignant cells in vitro and in vivo. Previous studies have found significant G2/M cell cycle arrest in response to LSF in various model of cancer and results have mainly been attributed to increased cyclin B1 protein levels and increased p21expression. Using genome-wide mRNA-Seq analysis we provide insights into the molecular mechanisms of action of LSF to identify a key pathway in cell cycle progression - the role of the anaphase promoting complex (APC) pathway. We evaluated gene expression changes in human erythroleukemic K562 cells following treatment with 15 µM LSF for 48h and compared them to immortalized human keratinocytes, human microvascular endothelial cells (HMEC-1) cells and normal human umbilical endothelial cells (HUVEC). We identified disparate gene expression changes in response to LSF between malignant and normal cells and immortalized cell lines. The results highlight significant down-regulation of kinase CDK1 which is suggestive that the existence and activity of APC/CDC20 complex will be inhibited along with its associated down-stream degradation of key cell cycle regulators preventing cell cycle progression from mitotic exit.

12.
Hell J Nucl Med ; 17 Suppl 1: 62-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24392471

RESUMEN

Epidemiological and clinical studies have established the health benefits of the Mediterranean diet, an important component of which are olives and olive oil derived from the olive tree (Olea Europea). It is now well-established that not only the major fatty acid constituents, but also the minor phenolic components, in olives and olive oil have important health benefits. Emerging research over the past decade has highlighted the beneficial effects of a range of phenolic compounds from olives and olive oil, particularly for cardiovascular diseases, metabolic syndrome and inflammatory conditions. Mechanisms of action include potent antioxidant and anti-inflammatory effects. Further, accumulating evidence indicates the potential of the polyphenols and potent antioxidants, hydroxytyrosol and oleuropein in oncology. Numerous studies, both in vitro and in vivo, have demonstrated the anticancer effects of hydroxytyrosol which include chemopreventive and cell-specific cytotoxic and apoptotic effects. Indeed, the precise molecular mechanisms accounting for the antioxidant, anti-inflammatory and anticancer properties are now becoming clear and this is, at least in part, due to high through-put gene transcription profiling. Initially, we constructed phylogenetic trees to visualize the evolutionary relationship of members of the Oleaceae family and secondly, between plants producing hydroxytyrosol to make inferences of potential similarities or differences in their medicinal properties and to identify novel plant candidates for the treatment and prevention of disease. Furthermore, given the recent interest in hydroxytyrosol as a potential anticancer agent and chemopreventative we utilized transcriptome analysis in the erythroleukemic cell line K562, to investigate the effects of hydroxytyrosol on three gene pathways: the complement system, The Warburg effect and chromatin remodeling to ascertain relevant gene candidates in the prevention of cancer.

13.
Cells Dev ; 177: 203882, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37956740

RESUMEN

Phosphorylated histone H2AX (γH2AX) represents a sensitive molecular marker of DNA double-strand breaks (DSBs) and is implicated in stem cell biology. We established a model of mouse embryonic stem cell (mESC) differentiation and examined the dynamics of γH2AX foci during the process. Our results revealed high numbers of γH2AX foci in undifferentiated mESCs, decreasing as the cells differentiated towards the endothelial cell lineage. Notably, we observed two distinct patterns of γH2AX foci: the typical discrete γH2AX foci, which colocalize with the transcriptionally permissive chromatin mark H3K4me3, and the less well-characterized clustered γH2AX regions, which were only observed in intermediate progenitor cells. Next, we explored responses of mESCs to γ-radiation (137Cs). Following exposure to γ-radiation, mESCs showed a reduction in cell viability and increased γH2AX foci, indicative of radiosensitivity. Despite irradiation, surviving mESCs retained their differentiation potential. To further exemplify our findings, we investigated neural stem progenitor cells (NSPCs). Similar to mESCs, NSPCs displayed clustered γH2AX foci associated with progenitor cells and discrete γH2AX foci indicative of embryonic stem cells or differentiated cells. In conclusion, our findings demonstrate that γH2AX serves as a versatile marker of DSBs and may have a role as a biomarker in stem cell differentiation. The distinct patterns of γH2AX foci in differentiating mESCs and NSPCs provide valuable insights into DNA repair dynamics during differentiation, shedding light on the intricate balance between genomic integrity and cellular plasticity in stem cells. Finally, the clustered γH2AX foci observed in intermediate progenitor cells is an intriguing feature, requiring further exploration.


Asunto(s)
Reparación del ADN , Células Madre Embrionarias de Ratones , Animales , Ratones , Reparación del ADN/genética , Roturas del ADN de Doble Cadena , Células Madre Embrionarias , Diferenciación Celular/genética
14.
Am J Respir Cell Mol Biol ; 48(1): 135-44, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22652198

RESUMEN

Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.


Asunto(s)
Asma/patología , Asma/fisiopatología , Mucinas/fisiología , Proteínas Musculares/fisiología , Péptidos/fisiología , Actinas/metabolismo , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Anexina A5/metabolismo , Asma/tratamiento farmacológico , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/fisiopatología , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Femenino , Inmunohistoquímica , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Mucinas/farmacología , Proteínas Musculares/farmacología , Ovalbúmina/inmunología , Péptidos/farmacología , Proteínas Recombinantes/farmacología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Factor de Crecimiento Transformador beta1/metabolismo , Factor Trefoil-2
15.
Cell Mol Life Sci ; 68(24): 4101-14, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21584806

RESUMEN

Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Doxorrubicina/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Animales , Ácidos Hidroxámicos/farmacología , Ratas
16.
J Mol Graph Model ; 110: 108050, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655918

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing COVID-19 pandemic. With some notable exceptions, safe and effective vaccines, which are now being widely distributed globally, have largely begun to stabilise the situation. However, emerging variants of concern and vaccine hesitancy are apparent obstacles to eradication. Therefore, the need for the development of potent antivirals is still of importance. In this context, the SARS-CoV-2 main protease (Mpro) is a critical target and numerous clinical trials, predominantly in the private domain, are currently in progress. Here, our aim was to extend our previous studies, with hypericin and cyanidin-3-O-glucoside, as potential inhibitors of the SARS-CoV-2 Mpro. Firstly, we performed all-atom microsecond molecular dynamics simulations, which highlight the stability of the ligands in the Mpro active site over the duration of the trajectories. We also invoked PELE Monte Carlo simulations which indicate that both hypericin and cyanidin-3-O-glucoside preferentially interact with the Mpro active site and known allosteric sites. For further validation, we performed an in vitro enzymatic activity assay that demonstrated that hypericin and cyanidin-3-O-glucoside inhibit Mpro activity in a dose-dependent manner at biologically relevant (µM) concentrations. However, both ligands are much less potent than the well-known covalent antiviral GC376, which was used as a positive control in our experiments. Nevertheless, the biologically relevant activity of hypericin and cyanidin-3-O-glucoside is encouraging. In particular, a synthetic version of hypericin has FDA orphan drug designation, which could simplify potential clinical evaluation in the context of COVID-19.


Asunto(s)
COVID-19 , Pandemias , Antivirales/farmacología , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Método de Montecarlo , Inhibidores de Proteasas/farmacología , SARS-CoV-2
17.
J Mol Graph Model ; 104: 107851, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556646

RESUMEN

The SARS-CoV-2 virus is causing COVID-19, an ongoing pandemic, with extraordinary global health, social, and political implications. Currently, extensive research and development efforts are aimed at producing a safe and effective vaccine. In the interim, small molecules are being widely investigated for antiviral effects. With respect to viral replication, the papain-like (PLpro) and main proteases (Mpro), are critical for processing viral replicase polypeptides. Further, the PLpro possesses deubiquitinating activity affecting key signalling pathways, including inhibition of interferon and innate immune antagonism. Therefore, inhibition of PLpro activity with small molecules is an important research direction. Our aim was to focus on identification of potential inhibitors of the protease activity of SARS-CoV-2 PLpro. We investigated 300 small compounds derived predominantly from our OliveNet™ library (222 phenolics) and supplemented with synthetic and dietary compounds with reported antiviral activities. An initial docking screen, using the potent and selective noncovalent PLpro inhibitor, GRL-0617 as a control, enabled a selection of 30 compounds for further analyses. From further in silico analyses, including docking to scenes derived from a publicly available molecular dynamics simulation trajectory (100 µs PDB 6WX4; DESRES-ANTON-11441075), we identified lead compounds for further in vitro evaluation using an enzymatic inhibition assay measuring SARS-CoV-2 PLpro protease activity. Our findings indicate that hypericin possessed inhibition activity, and both rutin and cyanidin-3-O-glucoside resulted in a concentration-dependent inhibition of the PLpro, with activity in the micromolar range. Overall, hypericin, rutin, and cyanidin-3-O-glucoside can be considered lead compounds requiring further characterisation for potential antiviral effects in appropriate model systems.


Asunto(s)
Antocianinas/química , Antivirales/química , Proteasas 3C de Coronavirus/química , Perileno/análogos & derivados , Rutina/química , Bibliotecas de Moléculas Pequeñas/química , Antocianinas/farmacología , Antracenos , Antivirales/farmacología , Sitios de Unión , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Pruebas de Enzimas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Perileno/química , Perileno/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Teoría Cuántica , Rutina/farmacología , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Termodinámica , Tratamiento Farmacológico de COVID-19
18.
Front Chem ; 8: 623971, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364229

RESUMEN

COVID-19 is an ongoing pandemic caused by the SARS-CoV-2 virus with important political, socio-economic, and public health consequences. Inhibiting replication represents an important antiviral approach, and in this context two viral proteases, the SARS-CoV-2 main and papain-like proteases (PLpro), which cleave pp1a and pp1ab polypeptides, are critical. Along with protease activity, the PLpro possesses deubiquitinating activity, which is important in immune regulation. Naphthalene-based inhibitors, such as the well-investigated GRL-0617 compound, have been shown to possess dual effects, inhibiting both protease and deubiquitinating activity of the PLpro. Rather than binding to the canonical catalytic triad, these type of non-covalent inhibitors target an adjacent pocket, the naphthalene-inhibitor binding site. Using a high-throughput screen, we have previously identified the dietary hypericin, rutin, and cyanidin-3-O-glucoside compounds as potential protease inhibitors targeting the naphthalene-inhibitor binding site. Here, our aim was to investigate the binding characteristics of these compounds to the PLpro, and to evaluate deubiquitinating activity, by analyzing seven different PLpro crystal structures. Molecular docking highlighted the relatively high affinity of GRL-0617 and dietary compounds. In contrast binding of the small molecules was abolished in the presence of ubiquitin in the palm subdomain of the PLpro. Further, docking the small molecules in the naphthalene-inhibitor binding site, followed by protein-protein docking revealed displacement of ubiquitin in a conformation inconsistent with functional activity. Finally, the deubiquitinating activity was validated in vitro using an enzymatic activity assay. The findings indicated that the dietary compounds inhibited deubiquitinase activity in the micromolar range with an order of activity of GRL-0167, hypericin >> rutin, cyanidin-3-O-glucoside > epigallocatechin gallate, epicatechin gallate, and cefotaxime. Our findings are in accordance with mechanisms and potential antiviral effects of the naphthalene-based, GRL-0617 inhibitor, which is currently progressing in preclinical trials. Further, our findings indicate that in particular hypericin, rutin, and cyanidin-3-O-glucoside, represent suitable candidates for subsequent evaluation as PLpro inhibitors.

19.
Comput Biol Chem ; 89: 107408, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33137690

RESUMEN

Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic is ongoing, with no proven safe and effective vaccine to date. Further, effective therapeutic agents for COVID-19 are limited, and as a result, the identification of potential small molecule antiviral drugs is of particular importance. A critical antiviral target is the SARS-CoV-2 main protease (Mpro), and our aim was to identify lead compounds with potential inhibitory effects. We performed an initial molecular docking screen of 300 small molecules, which included phenolic compounds and fatty acids from our OliveNet™ library (224), and an additional group of curated pharmacological and dietary compounds. The prototypical α-ketoamide 13b inhibitor was used as a control to guide selection of the top 30 compounds with respect to binding affinity to the Mpro active site. Further studies and analyses including blind docking were performed to identify hypericin, cyanidin-3-O-glucoside and SRT2104 as potential leads. Molecular dynamics simulations demonstrated that hypericin (ΔG = -18.6 and -19.3 kcal/mol), cyanidin-3-O-glucoside (ΔG = -50.8 and -42.1 kcal/mol), and SRT2104 (ΔG = -8.7 and -20.6 kcal/mol), formed stable interactions with the Mpro active site. An enzyme-linked immunosorbent assay indicated that, albeit, not as potent as the covalent positive control (GC376), our leads inhibited the Mpro with activity in the micromolar range, and an order of effectiveness of hypericin and cyanidin-3-O-glucoside > SRT2104 > SRT1720. Overall, our findings, and those highlighted by others indicate that hypericin and cyanidin-3-O-glucoside are suitable candidates for progress to in vitro and in vivo antiviral studies.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasa de Coronavirus/farmacología , Ensayo de Inmunoadsorción Enzimática , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/química , Inhibidores de Proteasa de Coronavirus/química , Ácidos Grasos/química , Ácidos Grasos/farmacología , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Fenoles/química , Fenoles/farmacología , SARS-CoV-2/metabolismo , Bibliotecas de Moléculas Pequeñas/química
20.
J Mol Graph Model ; 97: 107568, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32097886

RESUMEN

Streptococcus pneumoniae infection can lead to pneumococcal disease, a major cause of mortality in children under the age of five years. In low- and middle-income country settings where pneumococcal disease burden is high, vaccine use is low and widespread antibiotic use has led to increased rates of multi-drug resistant pneumococci. l-sulforaphane (LSF), derived from broccoli and other cruciferous vegetables, has established anti-inflammatory, antioxidant, and anti-microbial properties. Hence, we sought to investigate the potential role of LSF against pneumococcal infection. Using a combination of in vitro and computational methods, the results showed that LSF and relevant metabolites had a potential to reduce pneumococcal adherence through modulation of host receptors, regulation of inflammation, or through direct modification of bacterial factors. Treatment with LSF and metabolites reduced pneumococcal adherence to respiratory epithelial cells. Synchrotron-Fourier transform infrared microspectroscopy (S-FTIR) revealed biochemical changes in protein and lipid profiles of lung epithelial cells following treatment with LSF or metabolites. Molecular docking studies of 116 pneumococcal and 89 host factors revealed a potent effect for the metabolite LSF-glutathione (GSH). A comprehensive list of factors involved in interactions between S. pneumoniae and host cells was compiled to construct a bacterium and host interaction network. Network analysis revealed plasminogen, fibronectin, and RrgA as key factors involved in pneumococcal-host interactions. Therefore, we propose that these constitute critical targets for direct inhibition by LSF and/or metabolites, which may disrupt pneumococcal-host adherence. Overall, our findings further enhance understanding of the potential role of LSF to modulate pneumococcal-host dynamics.


Asunto(s)
Streptococcus pneumoniae , Sincrotrones , Niño , Preescolar , Humanos , Isotiocianatos , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Sulfóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA