Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446756

RESUMEN

Films and fibers of syndiotactic polystyrene (sPS), being amorphous or exhibiting nanoporous crystalline (NC) or dense crystalline phases, were loaded with salicylic acid (SA), a relevant non-volatile antimicrobial molecule. In the first section of the paper, sPS/SA co-crystalline (CC) δ form is characterized, mainly by wide angle X-ray diffraction (WAXD) patterns and polarized Fourier transform infrared (FTIR) spectra. The formation of sPS/SA δ CC phases allows the preparation of sPS fibers even with a high content of the antibacterial guest, which is also retained after repeated washing procedures at 65 °C. A preparation procedure starting from amorphous fibers is particularly appropriate because involves a direct formation of the CC δ form and a simultaneous axial orientation. The possibility of tuning drug amount and release kinetics, by simply selecting suitable crystalline phases of a commercially available polymer, makes sPS fibers possibly useful for many applications. In particular, fibers with δ CC forms, which retain SA molecules in their crystalline phases, could be useful for antimicrobial textiles and fabrics. Fibers with the dense γ form which easily release SA molecules, because they are only included in their amorphous phases, could be used for promising SA-based preparations for antibacterial purposes in food processing and preservation and public health. Finally, using a cell-based assay system and antibacterial tests, we investigated the cellular activity, toxicity and antimicrobial properties of amorphous, δ CC forms and dense γ form of sPS fibers loaded with different contents of SA.


Asunto(s)
Poliestirenos , Ácido Salicílico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Poliestirenos/química , Difracción de Rayos X , Antibacterianos/farmacología
2.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613628

RESUMEN

The endoplasmic reticulum (ER) is a dynamic structure, playing multiple roles including calcium storage, protein synthesis and lipid metabolism. During cellular stress, variations in ER homeostasis and its functioning occur. This condition is referred as ER stress and generates a cascade of signaling events termed unfolded protein response (UPR), activated as adaptative response to mitigate the ER stress condition. In this regard, calcium levels play a pivotal role in ER homeostasis and therefore in cell fate regulation since calcium signaling is implicated in a plethora of physiological processes, but also in disease conditions such as neurodegeneration, cancer and metabolic disorders. A large body of emerging evidence highlighted the functional role of TRP channels and their ability to promote cell survival or death depending on endoplasmic reticulum stress resolution, making them an attractive target. Thus, in this review we focused on the TRP channels' correlation to UPR-mediated ER stress in disease pathogenesis, providing an overview of their implication in the activation of this cellular response.


Asunto(s)
Calcio , Estrés del Retículo Endoplásmico , Calcio/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Señalización del Calcio
3.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36614168

RESUMEN

Different molecular mechanisms contribute to the development of multidrug resistance in cancer, including increased drug efflux, enhanced cellular repair mechanisms and alterations of drug metabolism or drug targets. ABCG2 is a member of the ATP-binding cassette superfamily transporters that promotes drug efflux, inducing chemotherapeutic resistance in malignant cells. In this context, the development of selective ABCG2 inhibitors might be a suitable strategy to improve chemotherapy efficacy. Thus, through a multidisciplinary approach, we identified a new ABCG2 selective inhibitor (8), highlighting its ability to increase mitoxantrone cytotoxicity in both hepatocellular carcinoma (EC50from 8.67 ± 2.65 to 1.25 ± 0.80 µM) and transfected breast cancer cell lines (EC50from 9.92 ± 2.32 to 2.45 ± 1.40 µM). Moreover, mitoxantrone co-administration in both transfected and non-transfected HEK293 revealed that compound 8 notably lowered the mitoxantrone EC50, demonstrating its efficacy along with the importance of the ABCG2 extrusion pump overexpression in MDR reversion. These results were corroborated by evaluating the effect of inhibitor 8 on mitoxantrone cell uptake in multicellular tumor spheroids and via proteomic experiments.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Línea Celular Tumoral , Resistencia a Antineoplásicos , Células HEK293 , Mitoxantrona/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteómica
4.
Life (Basel) ; 14(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541744

RESUMEN

Lycium barbarum, known as goji berry or wolfberry, is a fruit long associated with health benefits, showing a plethora of effects ranging from antioxidant, anticancer, anti-inflammatory, and immunomodulatory effects. Its potential is attributed to the significant presence of polysaccharides, glycopeptides, polyphenols, flavonoids, carotenoids, and their derivatives. These compounds effectively counteract the action of free radicals, positively influencing cellular balance and intracellular signaling, contributing to overall cell health and function acting on multiple molecular pathways. Several fractions extracted from goji berries demonstrate antitumor properties, particularly effective against breast cancer, without showing cytotoxic effects on normal human cells. Hence, the review explored the fundamental traits of bioactive elements in Lycium barbarum and their potential in cancer treatment and, specifically, breast cancer. It focused on elucidating wolfberry's influenced biochemical pathways, its synergism with anticancer drugs, and its potential to alleviate the side effects associated with existing cancer treatments.

5.
Antioxidants (Basel) ; 13(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38929147

RESUMEN

Lycium barbarum, commonly recognized as goji berry or wolfberry, is highly appreciated not only for its organoleptic and nutritional properties but also as an important source of bioactive compounds such as polysaccharides, carotenoids, phenolics, and various other non-nutritive compounds. These constituents give it a multitude of health benefits, including antioxidant, anti-inflammatory, and anticancer properties. However, the precise biochemical mechanisms responsible for its anticancer effects remain unclear, and the comprehensive composition of goji berry extracts is often insufficiently explored. This study aimed to investigate the biochemical pathways modulated in breast cancer cells by an ethanolic extract of Lycium barbarum fruit (LBE). Following metabolomic profiling using UHPLC-HRMS/MS, we assessed the antitumoral properties of LBE on different breast cancer cell lines. This investigation revealed that LBE exhibited cytotoxic effects, inducing a pro-oxidant effect that triggered pyroptosis activation through endoplasmic reticulum (ER) stress and subsequent activation of the P-IRE1α/XBP1/NLRP3 axis in MCF-7 cells. In addition, LBE did not display cytotoxicity toward healthy human cells but demonstrated antioxidant properties by neutralizing ROS generated by doxorubicin. These findings underscore the potential of LBE as a highly promising natural extract in cancer therapy.

6.
Int J Nanomedicine ; 19: 9373-9393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286353

RESUMEN

Purpose: Extracellular vesicles (EVs) are promising tools for nanomedicine and nanobiotechnology. The purification of mammalian-derived EVs involves intensive processes, and their therapeutic application raises multiple safety and regulatory issues. Plants have the potential to serve as nonconventional sources of therapeutically relevant EVs. In this context, we recently identified hairy roots (HRs) of medicinal plants as a novel biotechnological platform to produce EVs for human health. Methods: Herein, we report the purification, omics profiling, and bioactivity of EVs isolated from HRs of the medicinal plants S. sclarea and S. dominica. EVs were isolated from conditioned media of HR cultures using differential ultracentrifugation (dUC) and size exclusion chromatography (SEC). The isolated EVs were characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The proteomic and metabolomic profiles of the EVs were determined using mass spectrometry. Uptake studies and bioactivity assays, including confocal microscopy, MTT, flow cytometry, ROS quantification, and untargeted metabolomics analyses, were conducted in SH-SY5Y cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to evaluate the therapeutic potential of EVs in an in vitro model of Parkinson's disease. Results: S. sclarea HRs released nanosized round-shaped EVs with a distinctive molecular signature. HR EVs from S. sclarea and S. dominica revealed conserved cargo of secondary metabolites, predominantly triterpenoids, which are known for their antioxidant properties. We showed that HR EVs are safe, enter the cells, and strongly inhibit apoptosis in a cellular model of Parkinson's disease. Cellular metabolomics revealed that EVs preserved metabolic homeostasis and mitigated cellular oxidative stress when co-administered with 6-OHDA. Mechanistically, HR EVs inhibited 6-OHDA autoxidation and substantially reduced the accumulation of its oxidative products, which are responsible for 6-OHDA-induced toxicity. Conclusion: Collectively, our findings provide compelling evidence that EVs isolated from the hairy roots of Salvia species are promising, non-mammalian alternative for the design of novel therapies targeting neurological disorders.


Asunto(s)
Vesículas Extracelulares , Fármacos Neuroprotectores , Enfermedad de Parkinson , Raíces de Plantas , Salvia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Raíces de Plantas/química , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Salvia/química , Línea Celular Tumoral , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteómica/métodos , Metabolómica/métodos , Oxidopamina/farmacología , Especies Reactivas de Oxígeno/metabolismo
7.
Eur J Med Chem ; 266: 116128, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38232463

RESUMEN

In this paper we present the design, synthesis, and biological evaluation of a new series of peptidomimetics acting as potent anti-SARS-CoV-2 agents. Starting from our previously described Main Protease (MPro) and Papain Like Protease (PLPro) dual inhibitor, CV11, here we disclose its high inhibitory activity against cathepsin L (CTSL) (IC50 = 19.80 ± 4.44 nM), an emerging target in SARS-CoV-2 infection machinery. An in silico design, inspired by the structure of CV11, led to the development of a library of peptidomimetics showing interesting activities against CTSL and Mpro, allowing us to trace the chemical requirements for the binding to both enzymes. The screening in Vero cells infected with 5 different SARS-CoV-2 variants of concerns, highlighted sub-micromolar activities for most of the synthesized compounds (13, 15, 16, 17 and 31) in agreement with the enzymatic inhibition assays results. The compounds showed lack of activity against several different RNA viruses except for the 229E and OC43 human coronavirus strains, also characterized by a cathepsin-L dependent release into the host cells. The most promising derivatives were also evaluated for their chemical and metabolic in-vitro stability, with derivatives 15 and 17 showing a suitable profile for further preclinical characterization.


Asunto(s)
COVID-19 , Peptidomiméticos , Chlorocebus aethiops , Humanos , Animales , Catepsina L , SARS-CoV-2 , Peptidomiméticos/farmacología , Inhibidores de Proteasas/farmacología , Células Vero , Péptido Hidrolasas , Antivirales/farmacología , Simulación del Acoplamiento Molecular
8.
J Med Chem ; 67(15): 12711-12734, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39038808

RESUMEN

Haspin is an emerging, but rather unexplored, divergent kinase involved in tumor growth by regulating the mitotic phase. In this paper, the in-silico design, synthesis, and biological characterization of a new series of substituted indoles acting as potent Haspin inhibitors are reported. The synthesized derivatives have been evaluated by FRET analysis, showing very potent Haspin inhibition. Then, a comprehensive in-cell investigation highlighted compounds 47 and 60 as the most promising inhibitors. These compounds were challenged for their synergic activity with paclitaxel in 2D and 3D cellular models, demonstrating a twofold improvement of the paclitaxel antitumor activity. Compound 60 also showed remarkable selectivity when tested in a panel of 70 diverse kinases. Finally, in-silico studies provided new insight about the chemical requirements useful to develop new Haspin inhibitors. Biological results, together with the drug-likeness profile of 47 and 60, make these derivatives deserving further studies.


Asunto(s)
Indoles , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Humanos , Relación Estructura-Actividad , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Paclitaxel/farmacología , Paclitaxel/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales
9.
Nutrients ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375652

RESUMEN

Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common causes of chronic liver disease and are increasingly emerging as a global health problem. Such disorders can lead to liver damage, resulting in the release of pro-inflammatory cytokines and the activation of infiltrating immune cells. These are some of the common features of ALD progression in ASH (alcoholic steatohepatitis) and NAFLD to NASH (non-alcoholic steatohepatitis). Hepatic steatosis, followed by fibrosis, lead to a continuous progression accompanied by angiogenesis. This process creates hypoxia, which activates vascular factors, initiating pathological angiogenesis and further fibrosis. This forms a vicious cycle of ongoing damage and progression. This condition further exacerbates liver injury and may contribute to the development of comorbidities, such as metabolic syndrome as well as hepatocellular carcinoma. Increasing evidence suggests that anti-angiogenic therapy may have beneficial effects on these hepatic disorders and their exacerbation. Therefore, there is a great interest to deepen the knowledge of the molecular mechanisms of natural anti-angiogenic products that could both prevent and control liver diseases. In this review, we focus on the role of major natural anti-angiogenic compounds against steatohepatitis and determine their potential therapeutic benefits in the treatment of liver inflammation caused by an imbalanced diet.


Asunto(s)
Hepatopatías Alcohólicas , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Hígado/metabolismo , Fibrosis , Hepatopatías Alcohólicas/metabolismo , Dieta Alta en Grasa , Neoplasias Hepáticas/metabolismo , Inflamación/metabolismo
10.
Sci Rep ; 13(1): 14923, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37691048

RESUMEN

Many studies have explored the extraction of bioactive compounds from different onion solid wastes, such as bulb, skin, and peel. However, onion leaves have received limited attention despite their potential as a valuable source of nutraceutical compounds. This study aimed to valorise, for the first time, the agricultural waste in the form of spring onion leaves (CN, Cipollotto Nocerino) to obtain antioxidant-rich polyphenolic extracts. A Box-Behnken design (BBD) was used to assess the impact of microwave-assisted extraction (MAE) variables (temperature, time, extraction volume, and ethanol concentration) on total polyphenol content (TPC) measured by Folin-Ciocalteu method and the antioxidant power determined by FRAP assay. Response surface methodology (RSM) was applied, and regression equations, analysis of variance, and 3D response curves were developed. Our results highlighted that the TPC values range from 0.76 to 1.43 mg GAE g-1 dw, while the FRAP values range from 8.25 to 14.80 mmol Fe(II)E g-1 dw. The optimal extraction conditions predicted by the model were 60 °C, 22 min, ethanol concentration 51% (v/v), and solvent volume 11 mL. These conditions resulted in TPC and FRAP values of 1.35 mg GAE g-1 dw and 14.02 mmol Fe(II)E g-1 dw, respectively. Furthermore, the extract obtained under optimized conditions was characterized by UHPLC-ESI-Orbitrap-MS analysis. LC/MS-MS platform allowed us to tentatively identify various compounds belonging to the class of flavonoids, saponins, fatty acids, and lipids. Finally, the ability of CN optimal extract to inhibit the intracellular reactive oxygen species (ROS) release in a hepatocarcinoma cell line using an H2O2-induced oxidative stress model, was evaluated. The results highlighted the potential of CN extract as a valuable source of polyphenols with significant antioxidant properties, suitable for various applications in the food and pharmaceutical industries.


Asunto(s)
Compuestos de Bifenilo , Cebollas , Picratos , Hojas de la Planta , Cebollas/química , Hojas de la Planta/química , Extractos Vegetales/química , Residuos Sólidos , Compuestos de Bifenilo/aislamiento & purificación , Picratos/aislamiento & purificación , Microondas , Células Hep G2 , Humanos , Tecnología Química Verde
11.
Antioxidants (Basel) ; 12(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36978952

RESUMEN

Nutrition has a significant effect and a crucial role in disease prevention. Low consumption of fruit and vegetables and a sedentary lifestyle are closely related with the onset and development of many types of cancer. Recently, nutraceuticals have gained much attention in cancer research due to their pleiotropic effects and relatively non-toxic behavior. In fact, although in the past there have been conflicting results on the role of some antioxidant compounds as allies against cancer, numerous recent clinical studies highlight the efficacy of dietary phytochemicals in the prevention and treatment of cancer. However, further investigation is necessary to gain a deeper understanding of the potential anticancer capacities of dietary phytochemicals as well as the mechanisms of their action. Therefore, this review examined the current literature on the key properties of the bioactive components present in the diet, such as carotenoids, polyphenols, and antioxidant compounds, as well as their use in cancer therapy. The review focused on potential chemopreventive properties, evaluating their synergistic effects with anticancer drugs and, consequently, the side effects associated with current cancer treatments.

12.
Biomedicines ; 11(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37239128

RESUMEN

Activating transcription factor 6α (ATF6α) is an endoplasmic reticulum protein known to participate in unfolded protein response (UPR) during ER stress in mammals. Herein, we show that in mouse C2C12 myoblasts induced to differentiate, ATF6α is the only pathway of the UPR activated. ATF6α stimulation is p38 MAPK-dependent, as revealed by the use of the inhibitor SB203580, which halts myotube formation and, at the same time, impairs trafficking of ATF6α, which accumulates at the cis-Golgi without being processed in the p50 transcriptional active form. To further evaluate the role of ATF6α, we knocked out the ATF6α gene, thus inhibiting the C2C12 myoblast from undergoing myogenesis, and this occurred independently from p38 MAPK activity. The expression of exogenous ATF6α in knocked-out ATF6α cells recover myogenesis, whereas the expression of an ATF6α mutant in the p38 MAPK phosphorylation site (T166) was not able to regain myogenesis. Genetic ablation of ATF6α also prevents the exit from the cell cycle, which is essential for muscle differentiation. Furthermore, when we inhibited differentiation by the use of dexamethasone in C2C12 cells, we found inactivation of p38 MAPK and, consequently, loss of ATF6α activity. All these findings suggest that the p-p38 MAPK/ATF6α axis, in pathophysiological conditions, regulates myogenesis by promoting the exit from the cell cycle, an essential step to start myoblasts differentiation.

13.
J Med Chem ; 66(13): 9201-9222, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37334504

RESUMEN

Acute pancreatitis (AP) is a potentially life-threatening illness characterized by an exacerbated inflammatory response with limited options for pharmacological treatment. Here, we describe the rational development of a library of soluble epoxide hydrolase (sEH) inhibitors for the treatment of AP. Synthesized compounds were screened in vitro for their sEH inhibitory potency and selectivity, and the results were rationalized by means of molecular modeling studies. The most potent compounds were studied in vitro for their pharmacokinetic profile, where compound 28 emerged as a promising lead. In fact, compound 28 demonstrated a remarkable in vivo efficacy in reducing the inflammatory damage in cerulein-induced AP in mice. Targeted metabololipidomic analysis further substantiated sEH inhibition as a molecular mechanism of the compound underlying anti-AP activity in vivo. Finally, pharmacokinetic assessment demonstrated a suitable profile of 28 in vivo. Collectively, compound 28 displays strong effectiveness as sEH inhibitor with potential for pharmacological AP treatment.


Asunto(s)
Pancreatitis , Ratones , Animales , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Epóxido Hidrolasas , Enfermedad Aguda , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacocinética
14.
Front Oncol ; 12: 1065935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36844925

RESUMEN

The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.

15.
Biomedicines ; 10(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36009556

RESUMEN

Parkinson's disease (PD) represents one of the most common neurodegenerative disorders, characterized by a dopamine (DA) deficiency in striatal synapses and misfolded toxic α-synuclein aggregates with concomitant cytotoxicity. In this regard, the misfolded proteins accumulation in neurodegenerative disorders induces a remarkable perturbations of endoplasmic reticulum (ER) homeostasis leading to persistent ER stress, which in turn, effects protein synthesis, modification, and folding quality control. A large body of evidence suggests that natural products target the ER stress signaling pathway, exerting a potential action in cancers, diabetes, cardiovascular and neurodegenerative diseases. This study aims to assess the neuroprotective effect of cocoa extract and its purified fractions against a cellular model of Parkinson's disease represented by 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma. Our findings demonstrate, for the first time, the ability of cocoa to specifically targets PERK sensor, with significant antioxidant and antiapoptotic activities as both crude and fractioning extracts. In addition, cocoa also showed antiapoptotic properties in 3D cell model and a notable ability to inhibit the accumulation of α-synuclein in 6-OHDA-induced cells. Overall, these results indicate that cocoa exerts neuroprotective effects suggesting a novel possible strategy to prevent or, at least, mitigate neurodegenerative disorders, such as PD.

16.
Eur J Med Chem ; 244: 114857, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332548

RESUMEN

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animales , Humanos , Proteasas 3C de Coronavirus , Células Vero , Proteínas no Estructurales Virales , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
17.
Eur J Med Chem ; 238: 114435, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35598411

RESUMEN

TRPM8 has recently emerged as a druggable target in prostate cancer (PC) and TRPM8 modulators have been proposed as potential anticancer agents in this pathology. We have recently demonstrated their effectiveness in a castration-resistant prostate cancer (CRPC) model that is usually resistant to androgen deprivation therapy (ADT) and is considered the most aggressive form of PC. This is why the discovery of selective, effective, and potent TRPM8 modulators would improve the molecular arsenal in support of PC standard-of-care treatments. In the present paper we describe the design and the synthesis of a new series of TRPM8 antagonists, preliminarily characterized in vitro for their potency and selectivity by fluorimetric calcium assays. The preliminary screening allowed the identification of several potent (0.11 µM < IC50 < 0.49 µM) and selective compounds. The most potent derivatives were further characterized by patch-clamp electrophysiology assays, confirming their noteworthy activity. Moreover, the behavior of these compounds was investigated in 2D and 3D models of PC. These TRPM8 antagonists showed remarkable efficacy in inhibiting the growth induced by androgen in various PC cells as well as in CRPC models, confirming their potential as anticancer agents.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Canales Catiónicos TRPM , Antagonistas de Andrógenos , Andrógenos , Humanos , Masculino , Proteínas de la Membrana , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología
18.
J Med Chem ; 65(16): 11340-11364, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35972998

RESUMEN

Neuronal Kv7 channels represent important pharmacological targets for hyperexcitability disorders including epilepsy. Retigabine is the prototype Kv7 activator clinically approved for seizure treatment; however, severe side effects associated with long-term use have led to its market discontinuation. Building upon the recently described cryoEM structure of Kv7.2 complexed with retigabine and on previous structure-activity relationship studies, a small library of retigabine analogues has been designed, synthesized, and characterized for their Kv7 opening ability using both fluorescence- and electrophysiology-based assays. Among all tested compounds, 60 emerged as a potent and photochemically stable neuronal Kv7 channel activator. Compared to retigabine, compound 60 displayed a higher brain/plasma distribution ratio, a longer elimination half-life, and more potent and effective anticonvulsant effects in an acute seizure model in mice. Collectively, these data highlight compound 60 as a promising lead compound for the development of novel Kv7 activators for the treatment of hyperexcitability diseases.


Asunto(s)
Anticonvulsivantes , Canal de Potasio KCNQ3 , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Carbamatos , Canal de Potasio KCNQ2 , Ratones , Fenilendiaminas/química , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
19.
J Cardiovasc Dev Dis ; 9(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36547420

RESUMEN

Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.

20.
Eur J Med Chem ; 234: 114233, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286926

RESUMEN

The enzyme glutaminase-1 (GLS-1) has shown a clear and coherent implication in the progression and exacerbation of different aggressive tumors such as glioblastoma, hepatocarcinoma, pancreas, bone, and triple-negative breast cancer. Few chemotypes are currently available as selective GLS-1 inhibitors, and still, fewer of them are at the clinical stage. In the present paper, starting from a naturally-inspired antitumor compound library, metabolomics has been used to putatively identify the molecular mechanism underlying biological activity. GLS-1 was identified as a potential target. Biochemical analysis confirmed the hypothesis leading to the identification of a new hit compound acting as a GLS-1 selective inhibitor (IC50 = 3.96 ± 1.05 µM), compared to the GLS-2 isoform (IC50 = 12.90 ± 0.87 µM), with remarkable antitumor potency over different aggressive tumor cell lines. Molecular modelling studies revealed new insight into the drug-target interaction providing robust SAR clues for the rational hit-to-lead development. The approach undertaken underlines the wide potential of metabolomics applied to drug discovery, particularly in target identification and hit discovery following phenotype screening.


Asunto(s)
Glutaminasa , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Humanos , Metabolómica , Fenotipo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA