Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38400413

RESUMEN

Chemosensor technology for trace gases in the air always aims to identify these compounds and then measure their concentrations. For identification, traceable methods are sparse and relate to large appliances such as mass spectrometers. We present a new method that uses the alternative traceable measurement of the ionization energies of trace gases in a way that can be miniaturized and energetically tuned. We investigate the achievable performance. Since tunable UV sources are not available for photoionization, we take a detour via impact ionization with electrons, which we generate using the photoelectric effect and bring to sharp, defined energies on a nanoscale in the air. Electron impact ionization is thus possible at air pressures of up to 900 hPa. The sensitivity of the process reaches 1 ppm and is equivalent to that of classic PID. With sharpened energy settings, substance identification is currently possible with an accuracy of 30 meV. We can largely explain the experimental observations with the known quantum mechanical models.

2.
Skin Pharmacol Physiol ; 35(6): 343-353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353780

RESUMEN

INTRODUCTION: We aim to explore potentials and modalities of cold atmospheric pressure plasma (CAP) for the subsequent development of therapies targeting an increased perfusion of the lower leg skin tissue. In this study, we addressed the question whether the microcirculation enhancement is restricted to the tissue in direct contact with plasma or if adjacent tissue might also benefit. METHODS: A dielectric barrier discharge (DBD)-generated CAP device exhibiting an electrode area of 27.5 cm2 was used to treat the anterior lower leg of ten healthy subjects for 4.5 min. Subsequently, hyperspectral imaging was performed to measure the tempospatially resolved characteristics of microcirculation parameters in superficial (up to 1 mm) and deeper (up to 5 mm) skin layers. RESULTS: In the tissue area covered by the plasma electrode, DBD-CAP treatment enhances most of the perfusion parameters. The maximum oxygen saturation increase reached 8%, the near-infrared perfusion index (NIR) increased by a maximum of 4%, and the maximum tissue hemoglobin increase equaled 14%. Tissue water index (TWI) was lower in both the control and the plasma groups, thus not affected by the DBD-CAP treatment. Yet, our study reveals that adjacent tissue is hardly affected by the enhancements in the electrode area, and the effects are locally confined. CONCLUSION: Application of DBD-CAP to the lower leg resulted in enhancement of cutaneous microcirculation that extended 1 h beyond the treatment period with localization to the tissue area in direct contact with the cold plasma. This suggests the possibility of tailoring application schemes for topically confined enhancement of skin microcirculation, e.g., in the treatment of chronic wounds.


Asunto(s)
Gases em Plasma , Humanos , Microcirculación , Gases em Plasma/farmacología , Piel , Presión Atmosférica , Voluntarios Sanos
3.
Sensors (Basel) ; 22(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632269

RESUMEN

In this study, the surface parameters wettability, roughness, and adhesive penetration, which are important for wood bonding, were investigated and evaluated utilizing non-destructive methods after different mechanical processing. For this purpose, beech and birch finger joints were prepared with different cutting combinations (three cutters with different sharpness levels and two feed rates) in an industrial process. Effects and interactions on the surface parameters resulting from the different cutting combinations were evaluated using three Full Factorial Designs. The various cutting parameters had a predominantly significant influence on the surface parameters. The effects and identified interactions highlight the complexity of the cutting surface and the importance of wood bonding. In this respect, a new finding is that with sharper cutters, higher contact angles of the adhesives occur. The methods (contact angle measurement, laser scanning microscopy, and brightfield microscopy) used were well suited to make effects visible and quantifiable, which can be of interest for the quality control of the wood processing industry. The results can help to better understand and evaluate the design of wood surfaces via machining and the bonding of hardwoods. Possibly the results can contribute to further standardizing the production of load-bearing hardwood finger joints and making them more efficient.


Asunto(s)
Articulaciones de los Dedos , Madera , Adhesivos , Propiedades de Superficie , Humectabilidad
4.
J Wound Care ; 30(11): 904-914, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34747217

RESUMEN

OBJECTIVE: The response of different critical acute and hard-to-heal wounds to an innovative wound care modality-direct application of cold atmospheric plasma (CAP)-was investigated in this clinical case series. METHOD: Over an observation period of two years, acute wounds with at least one risk factor for chronification, as well as hard-to-heal wounds were treated for 180 seconds three times per week with CAP. CAP treatment was additional to standard wound care. Photographs were taken for wound documentation. The wound sizes before the first CAP treatment, after four weeks, after 12 weeks and at wound closure/end of observation time were determined using image processing software, and analysed longitudinally for the development of wound size. RESULTS: A total of 27 wounds (19 hard-to-heal and eight acute wounds) with a mean wound area of 15cm2 and a mean wound age of 49 months were treated with CAP and analysed. All (100%) of the acute wounds and 68% of the hard-to-heal wounds healed after an average treatment duration of 14.2 weeks. At the end of the observation period, 21% of hard-to-heal wounds were not yet closed but were reduced in size by >80%. In 11% of the hard-to-heal wounds (n=2) therapy failed. CONCLUSION: The results suggested a beneficial effect of additional CAP therapy on wound healing. DECLARATION OF INTEREST: This work was carried out within the research projects 'Plasma for Life' (funding reference no. 13FH6I04IA) with financial support from the German Federal Ministry of Education and Research (BMBF). In the past seven years AFS has provided consulting services to Evonik and has received institutional support by Heraeus, Johnson & Johnson and Evonik. There are no royalties to disclose. The Department for Trauma Surgery, Orthopaedics and Plastic Surgery received charitable donations by CINOGY GmbH. CINOGY GmbH released the di_CAP devices and electrodes for the study. WV and AH were involved in the development of the used di_CAP device (Plasmaderm, CINOGY GmbH). WV is shareholder of the outsourced start-up company CINOGY GmbH.


Asunto(s)
Gases em Plasma , Preescolar , Humanos , Gases em Plasma/uso terapéutico , Investigación , Cicatrización de Heridas
5.
Chemistry ; 26(16): 3509-3514, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31943400

RESUMEN

Heterogeneous copper catalysis enabled photoinduced C-H arylations under exceedingly mild conditions at room temperature. The versatile hybrid copper catalyst provided step-economical access to arylated heteroarenes, terpenes and alkaloid natural products with various aryl halides. The hybrid copper catalyst could be reused without significant loss of catalytic efficacy. Detailed studies in terms of TEM, HRTEM and XPS analysis of the hybrid copper catalyst, among others, supported its outstanding stability and reusability.

6.
Skin Pharmacol Physiol ; 33(2): 69-76, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31962316

RESUMEN

INTRODUCTION: Cold atmospheric plasma (CAP) is gaining increasing importance as a medical or cosmetic treatment for various indications. The technology is best suited to the treatment of surfaces such as the skin and is already used in wound care and, in exemplary case studies, the reduction of superficial tumors. Several plasma sources have been reported to affect the skin barrier function and potentially enable drug delivery across or into plasma-treated skin. OBJECTIVE: In this study, this effect was quantified for different plasma sources in order to elucidate the influence of voltage rise time, pulse duration, and power density in treatments of full-thickness skin. METHODS: We compared three different dielectric barrier discharges (DBDs) as to their permeabilization efficiency using Franz diffusion cell permeation experiments and measurements of the transepithelial electrical resistance (TEER) with full-thickness human excised skin. RESULTS: We found a significant reduction of the TEER for all three plasma sources. Permeation of the hydrophilic sodium fluorescein molecule was enhanced by a factor of 11.7 (low power) to 41.6 (high power) through µs-pulsed DBD-treated skin. A smaller effect was observed after treatment with the ns-pulsed DBD. CONCLUSIONS: The direct treatment of excised human full-thickness skin with CAP, specifically a DBD, can lead to pore formation and enhances transdermal transport of sodium fluorescein.


Asunto(s)
Electricidad , Gases em Plasma/farmacología , Absorción Cutánea , Piel/metabolismo , Administración Cutánea , Adulto , Femenino , Humanos , Persona de Mediana Edad , Gases em Plasma/administración & dosificación , Piel/efectos de los fármacos
7.
Appl Opt ; 58(22): 6063-6066, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503930

RESUMEN

Annually, wood-destroying insects cause severe damage in forests. The widespread population of typographer (Ips typographus), a beetle species from the subfamily of bark beetles (Scolytidae) in Europe, mainly occurs in coniferous wood, especially in spruce (Picea abies), the most silviculturally relevant wood species. The typographer infestation is detected mainly by visual monitoring and without invasive techniques only recognizable at a late stage. Terahertz radiation has shown enormous potential in nondestructive testing. THz measurements in the time-domain performed with a robotic THz system can be used for 3D reconstruction of the internal structure of the samples. In this article, we report the detection of a change in the wood structure of spruce caused by typographer burrows.

8.
Microcirculation ; 24(8)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28857373

RESUMEN

OBJECTIVE: The microcirculatory response of intact human skin to exposure with diCAP for different durations with a focus on the effect of implied mechanical pressure during plasma treatment was investigated. METHODS: Local relative hemoglobin, blood flow velocity, tissue oxygen saturation, and blood flow were monitored noninvasively for up to 1 hour in 1-2 mm depth by optical techniques, as well as temperature, pH values, and moisture before and after skin stimulation. The experimental protocol (N = 10) was set up to differentiate between pressure- and plasma-induced effects. RESULTS: Significant increases in microcirculation were only observed after plasma stimulation but not after pressure stimulus alone. For a period of 1 h after stimulation, local relative hemoglobin was increased by 5.1% after 270 seconds diCAP treatment. Tissue oxygen saturation increased by up to 9.4%, whereas blood flow was doubled (+106%). Skin pH decreased by 0.3 after 180 seconds and 270 seconds diCAP treatment, whereas skin temperature and moisture were not affected. CONCLUSIONS: diCAP treatment of intact skin notably enhances microcirculation for a therapeutically relevant period. This effect is specific to the plasma treatment and not an effect of the applied pressure. Prolonged treatment durations lead to more pronounced effects.


Asunto(s)
Microcirculación/efectos de los fármacos , Gases em Plasma/administración & dosificación , Piel/irrigación sanguínea , Adulto , Femenino , Hemoglobinas/metabolismo , Humanos , Masculino , Oxígeno/metabolismo
9.
Appl Opt ; 56(12): 3365-3371, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28430259

RESUMEN

In this work, we investigated the generation of particles during pure laser and plasma-assisted laser ablation of titanium. Experiments were performed using a NIR picosecond laser at a wavelength of 1030 nm and a pulse duration of 8 ps. For plasma-assisted ablation, an atmospheric pressure dielectric barrier discharge plasma was applied where the process gas was argon. Quantitative particle distributions at sizes from 10 nm to 10 µm were determined. In addition, we evaluated the amount of ablated material via laser scanning microscopy. The ablated volume was significantly increased by a factor of 2 to 3 in the case of plasma-assisted ablation, depending on the applied laser dose. It is shown that the increase in particle volume and number of particles was lower than the ablated volume. However, when applying plasma simultaneously, the generation of small nanoparticles increases notably by a factor of up to 6.63 at a laser dose of 0.7 kJ/mm2 for particles with a mean diameter of 10 nm. The results suggest that even smaller particles than measurable are generated. Hence, plasma-assisted laser ablation could enhance the process efficiency, reduce the particle agglomeration, and give rise to an increase in generation of nanoparticles at the same time.

11.
Materials (Basel) ; 16(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110056

RESUMEN

The influence of plasma-reduction treatment on iron and copper compounds at different oxidation states was investigated in this study. For this purpose, reduction experiments were carried out with artificially generated patina on metal sheets and with metal salt crystals of iron(II) sulfate (FeSO4), iron(III) chloride (FeCl3), and copper(II) chloride (CuCl2), as well as with the metal salt thin films of these compounds. All the experiments were carried out under cold low-pressure microwave plasma conditions; the main focus was on plasma reduction at a low pressure in order to evaluate an implementable process in a parylene-coating device. Usually, plasma is used within the parylene-coating process as a supporting tool for adhesion improvement and micro-cleaning efforts. This article offers another useful application for implementing plasma treatment as a reactive medium in order to apply different functionalities by an alteration in the oxidation state. The effect of microwave plasmas on metal surfaces and metal composite materials has been widely studied. In contrast, this work deals with metal salt surfaces generated from a solution and the influence of microwave plasma on metal chlorides and sulfates. While the plasma reduction of metal compounds commonly succeeds with hydrogen-containing plasmas at high temperatures, this study shows a new reduction process that reduces iron salts at temperatures between 30 and 50 °C. A novelty of this study is the alteration in the redox state of the base and noble metal materials within a parylene-coating device with the help of an implemented microwave generator. Another novelty of this study is treating metal salt thin layers for reduction purposes in order to provide the opportunity to include subsequent coating experiments to create parylene metal multilayers. Another new aspect of this study is the adapted reduction process of thin metal salt layers consisting of either noble or base metals, with an air plasma pre-treatment prior to the hydrogen-containing plasma-reduction procedure.

12.
Foods ; 12(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36900630

RESUMEN

Foodborne diseases are mainly caused by the contamination of meat or meat products with pathogenic microorganisms. In this study, we first investigated the in vitro application of TRIS-buffered plasma-activated water (Tb-PAW) on Campylobacter (C.) jejuni and Escherichia (E.) coli, with a reduction of approx. 4.20 ± 0.68 and 5.12 ± 0.46 log10 CFU/mL. Furthermore, chicken and duck thighs (inoculated with C. jejuni or E. coli) and breasts (with natural microflora) with skin were sprayed with Tb-PAW. Samples were packed under a modified atmosphere and stored at 4 °C for 0, 7, and 14 days. The Tb-PAW could reduce C. jejuni on days 7 and 14 (chicken) and E. coli on day 14 (duck) significantly. In chicken, there were no significant differences in sensory, pH-value, color, and antioxidant activity, but %OxyMb levels decreased, whereas %MetMb and %DeoMb increased. In duck, we observed slight differences in pH-value, color, and myoglobin redox forms for the Tb-PAW, which were not perceived by the sensory test persons. With only slight differences in product quality, its application as a spray treatment may be a useful method to reduce C. jejuni and E. coli on chicken and duck carcasses.

13.
Pathogens ; 12(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37111446

RESUMEN

During machine milking, pathogenic microorganisms can be transmitted from cow to cow through liners. Therefore, in Germany, a spray method for the intermediate disinfection of the milking cluster is often used for prevention. This method of cluster disinfection is easy to perform, requires little time and no extra materials, and the disinfection solution is safe from outside contamination in the spray bottle. Since no data on a systematic efficacy trial are available, the aim of this study was to determine the microbial reduction effect of intermediate disinfection. Therefore, laboratory and field trials were conducted. In both trials, two sprays of 0.85 mL per burst of different disinfectant solutions were sprayed into the contaminated liners. For sampling, a quantitative swabbing method using a modified wet-dry swab (WDS) technique based on DIN 10113-1: 1997-07 was applied. Thus, the effectiveness of disinfectants based on Peracetic Acid, Hydrogen Peroxide and Plasma-Activated Buffered Solution (PABS) was compared. In the laboratory trial, the inner surfaces of liners were contaminated with pure cultures of Escherichia (E.) coli, Staphylococcus (S.) aureus, Streptococcus (Sc.) uberis and Sc. agalactiae. The disinfection of the contaminated liners with the disinfectants resulted in a significant reduction in bacteria with values averaging 1 log for E. coli, 0.7 log for S. aureus, 0.7 log for Sc. uberis and 0.8 log for Sc. agalactiae. The highest reduction was obtained for contamination with E. coli (1.3 log) and Sc. uberis (0.8 log) when PABS was applied and for contamination with S. aureus (1.1 log) and Sc. agalactiae (1 log) when Peracetic Acid Solution (PAS) was used. Treatment with sterile water only led to an average reduction of 0.4 log. In the field trial, after the milking of 575 cows, the liners were disinfected and the total microorganism count from the liner surface was performed. The reduction was measured against an untreated liner within the cluster. Although a reduction in microorganisms was achieved in the field trial, it was not significant. When using PAS, a log reduction of 0.3 was achieved; when using PABS, a log reduction of 0.2 was obtained. The difference between the two disinfection methods was also not significant. Treatment with sterile water only led to a reduction of 0.1 log. The results show that spray disinfection under these circumstances does result in a reduction in the bacteria on the milking liner surface, but for effective disinfection a higher reduction would be preferred.

14.
Opt Lett ; 37(4): 566-8, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22344108

RESUMEN

In this Letter, we report on the near-surface modification of fused silica by applying a hydrogenous atmospheric pressure plasma jet at ambient temperature. A significant decrease in UV-transmission due to this plasma treatment was observed. By the use of secondary ion mass spectroscopy, the composition of the plasma-modified glass surface was investigated. It was found that the plasma treatment led to a reduction of a 100 nm thick SiO2 layer to SiOx of gradual depth-dependent composition. For this plasma-induced layer, depth-resolved characteristic optical parameters, such as index of refraction and dispersion, were determined. Further, a significant plasma-induced increase of the concentration of hydrogen in the bulk material was measured. The decrease in transmission is explained by the plasma-induced near-surface formation of SiOx on the one hand and the diffusion of hydrogen into the bulk material on the other hand.

15.
Exp Dermatol ; 21(12): 921-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23171452

RESUMEN

The lipids of the stratum corneum comprise the most important components of the skin barrier. In patients with ichthyoses or atopic dermatitis, the composition of the skin barrier lipids is disturbed resulting in dry, scaly, itching erythematous skin. Using the latest X-Ray Photoelectron Spectroscopy (XPS) technology, we investigated the physiological skin lipid composition of human skin and the effects of cold atmospheric plasma treatment on the lipid composition. Skin lipids were stripped off forearms of six healthy volunteers using the cyanoacrylate glue technique, plasma treated or not and then subjected to detailed XPS analysis. We found that the human lipid skin barrier consisted of 84.4% carbon (+1.3 SEM%), 10.8% oxygen (+1.0 SEM%) and 4.8% nitrogen (+0.3 SEM%). The composition of physiological skin lipids was not different in males and females. Plasma treatment resulted in significant changes in skin barrier lipid stoichiometry. The total carbon amount was reduced to 76.7%, and the oxygen amount increased to 16.5%. There was also a slight increase in nitrogen to 6.8%. These changes could be attributed to reduced C-C bonds and increased C-O, C=O, C-N and N-C-O bonds. The moderate increase in nitrogen was caused by an increase in C-N and N-C-O bonds. Our results show for the first time that plasma treatment leads to considerable changes in the human skin lipid barrier. Our proof of principle investigations established the technical means to analyse, if plasma-induced skin lipid barrier changes may be beneficial in the treatment of ichthyotic or eczematous skin.


Asunto(s)
Frío , Epidermis/metabolismo , Epidermis/efectos de la radiación , Metabolismo de los Lípidos/efectos de la radiación , Espectroscopía de Fotoelectrones/métodos , Adulto , Presión Atmosférica , Femenino , Antebrazo , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Permeabilidad/efectos de la radiación , Espectroscopía de Fotoelectrones/normas , Proyectos Piloto , Valores de Referencia , Reproducibilidad de los Resultados
16.
Appl Opt ; 51(17): 3847-52, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22695664

RESUMEN

We report on atmospheric pressure argon plasma-based surface treatment and hybrid laser-plasma ablation of barite crown glass N-BaK4 and heavy flint glass SF5. By pure plasma treatment, a significant surface smoothing, as well as an increase in both the surface energy and the strength of the investigated glass surfaces, was achieved. It was shown that for both glasses, hybrid laser plasma ablation allows an increase in the ablation depth by a factor of 2.1 with respect to pure laser ablation. The ablated volume was increased by an averaged factor of 1.5 for N-BaK4 and 3.7 for SF5.

17.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893510

RESUMEN

In this paper, a new approach for the synthesis of Parylene-metal multilayers was examined. The metal layers were derived from a metal salt solution in methanol and a post-drying plasma reduction treatment. This process was designed as a one-pot synthesis, which needs a very low amount of resources and energy compared with those using electron beam sputtering processes. The Parylene coatings were obtained after reduction plasma treatments with Parylene C. Therefore, a Parylene coating device with an included plasma microwave generator was used to ensure the character of a one-pot synthesis. This process provided ultra-thin metal salt layers in the range of 1-2 nm for layer thickness and 10-30 nm for larger metal salt agglomerates all over the metal salt layer. The Parylene layers were obtained with thicknesses between approx. 4.5 and 4.7 µm from ellipsometric measurements and 5.7-6.3 µm measured by white light reflectometry. Tensile strength analysis showed an orthogonal pulling stress resistance of around 4500 N. A surface roughness of 4-8 nm for the metal layers, as well as 20-29 nm for the Parylene outer layer, were measured. The wettability for non-polar liquids with a contact angle of 30° was better than for polar liquids, such as water, achieving 87° on the Parylene C surfaces.

18.
Materials (Basel) ; 15(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36295193

RESUMEN

In the development of new materials, the focus nowadays is increasingly on their relevance with regard to lightweight construction or environmental compatibility. The idea of a lightweight sandwich panel was inspired by an increasing number of cosmetic accessories that use the fibers of the loofah plant, a rapidly renewable, light, fibrous raw material. The aim of the study was to develop a fiber composite panel based on the fibers of the loofah plant (Luffa cylindrica) as core material and wooden veneer as the skin layer to be used in areas of lead construction. Three different panel variations were produced for the tests, with a fiber-adhesive ratio between 1:1.05, 1:0.8, and 1:0.5. The mechanical strength (flexural strength and internal bond) and the physical properties (density and thickness swelling) were determined as a function of the fiber-adhesive composition. The results show that the flexural strength increased by approx. 400% and the thickness swelling was reduced by 10% with increasing adhesive quantity.

19.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202580

RESUMEN

In recent years, awareness regarding sustainability and the responsible usage of natural resources has become more important in our modern society. As a result, wood as a building material experiences a renaissance. However, depending on the use case, protective measures may be necessary to increase wood's durability and prolong its service life. The chemical vapor deposition (CVD) of parylene-N layers offers an interesting alternative to solvent-based and potentially environmentally harmful coating processes. The CVD process utilized in this study generated transparent, uniform barrier layers and can be applied on an extensive range of substrates without the involvement of any solvents. In this study, European beech wood samples (Fagus sylvatica L.) were coated with parylene-N using the CVD process, with paracyclophane as a precursor. The aim of the study was to analyze the water absorption of beech wood, in relation to the different layer thicknesses of parylene-N. Therefore, four different coating thicknesses from 0.5 to 40 µm were deposited, depending on the initial amount of precursor used. The deposited layers were analyzed by reflection interference spectroscopy and scanning electron microscopy, and their chemical structures and compositions were investigated by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Due to the chemical structure of parylene-N, the deposited layers led to a significantly increased water contact angle and reduced the water uptake by 25-34% compared to the uncoated reference samples. A linear correlation between layer thickness and water absorption was observed. The coating of wood with parylene-N provides a promising water barrier, even with thin layers.

20.
Appl Opt ; 49(23): 4367-71, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20697438

RESUMEN

A challenge in the detection of explosives is the differentiation between explosives and contaminants. Synthetic musk-containing perfumes can cause false alarms, as these perfumes are nitroaromatic compounds, which can be mistaken for trinitro toluene (TNT) by some detectors. We present a detection principle based on surface-enhanced Raman scattering (SERS). A stream of the airborne compounds is focused and resublimated on a cooled nanostructured gold surface. We recorded high-resolution SERS spectra of TNT, musk xylene, and musk ketone. The nitroaromatic compounds can be identified unambiguously by their SERS spectra. Even the dominant bands containing nitro-group scissoring and symmetric stretching modes are significantly shifted by the difference in molecular structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA