Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neurosci ; 41(10): 2091-2105, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33472822

RESUMEN

Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K+ currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K+ channels, and Kv4.3 expression in these cells was significantly downregulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 downregulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain.SIGNIFICANCE STATEMENT Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here, we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K+ channels in nociceptive-like trigeminal ganglion (TG) neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.


Asunto(s)
Hiperalgesia/metabolismo , Canales de Potasio Shal/metabolismo , Neuralgia del Trigémino/metabolismo , Animales , Frío , Cara , Masculino , Neuronas Aferentes/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Glia ; 70(4): 634-649, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919284

RESUMEN

Many patients with systemic lupus erythematosus (SLE) live with chronic pain despite advances in medical management in reducing mortality related to SLE. Few animal studies have addressed mechanisms and treatment for chronic pain caused by SLE. In this study, we provide the first evidence for the analgesic effects of a GPR109A specific agonist (MK1903) and its action mechanisms in thermal hyperalgesia in female MRL/lpr mice, an SLE mouse model. Specifically, we show that MRL/lpr mice had a higher sensitivity to thermal stimuli at age 11-16 weeks, which was accompanied with significantly microglial and astrocytic activation, increases in p38 MAPK and glutamatergic synaptic activities in the spinal dorsal horn. We demonstrate that thermal hyperalgesia in MRL/lpr mice was significantly attenuated by intrathecal injection of MK1903. GPR109A was expressed in spinal microglia but not astrocytes or neurons. Its expression was significantly increased in MRL/lpr mice with thermal hyperalgesia. Activation of GPR109A receptors in microglia attenuated glutamatergic synaptic activity via suppressing production of interleukin-18 (IL-18). We provide evidence that activation of GPR109A attenuated thermal hyperalgesia in the SLE animal model via suppressing p38 MAPK activity and production of IL-18. Our study suggests that targeting the microglial GPR109A is a potent approach for reversing spinal neuroinflammation, abnormal excitatory synaptic activity, and management of thermal hyperalgesia caused by SLE.


Asunto(s)
Hiperalgesia , Lupus Eritematoso Sistémico , Receptores Acoplados a Proteínas G , Animales , Femenino , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Interleucina-18/metabolismo , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/metabolismo , Ratones , Ratones Endogámicos MRL lpr , Microglía/metabolismo
3.
Mol Pain ; 18: 17448069221107781, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35647699

RESUMEN

Spinal neuroinflammation plays a critical role in the genesis of neuropathic pain. Accumulating data suggest that abscisic acid (ABA), a phytohormone, regulates inflammatory processes in mammals. In this study, we found that reduction of the LANCL2 receptor protein but not the agonist ABA in the spinal cord is associated with the genesis of neuropathic pain. Systemic or intrathecal administration of ABA ameliorates the development and pre-existence of mechanical allodynia and heat hyperalgesia in animals with partial sciatic nerve ligation (pSNL). LANCL2 is expressed only in microglia in the spinal dorsal horn. Pre-emptive treatment with ABA attenuates activation of microglia and astrocytes, ERK activity, and TNFα protein abundance in the dorsal horn in rats with pSNL. These are accompanied by restoration of spinal LANCL2 protein abundance. Spinal knockdown of LANCL2 gene with siRNA recapitulates the behavioral and spinal molecular changes induced by pSNL. Activation of spinal toll-like receptor 4 (TLR4) with lipopolysaccharide leads to activation of microglia, and over production of TNFα, which are concurrently accompanied by suppression of protein levels of LANCL2 and peroxisome proliferator activated-receptor γ. These changes are ameliorated when ABA is added with LPS. The anti-inflammatory effects induced by ABA do not requires Gi protein activity. Our study reveals that the ABA/LANCL2 system is a powerful endogenous system regulating spinal neuroinflammation and nociceptive processing, suggesting the potential utility of ABA as the management of neuropathic pain.


Asunto(s)
Ácido Abscísico , Neuralgia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Lipopolisacáridos/farmacología , Mamíferos , Proteínas de la Membrana/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Ratas , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Mol Pain ; 14: 1744806918814350, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30380987

RESUMEN

Cooling temperatures and low pH have profound effects on somatosensory functions including nociception. The effects not only can be mediated by cooling temperature transducers and proton transducers expressed in subpopulations of somatosensory neurons but may also be mediated by ion channels involving membrane excitability such as voltage-dependent K+ channels in somatosensory neurons. In the present study, we performed the in situ patch-clamp recordings from nociceptive-like trigeminal ganglion neurons in ex vivo trigeminal ganglion preparations of adult rats. We determined effects of cooling temperatures and low pH on membrane properties and voltage-dependent currents in nociceptive-like trigeminal ganglion neurons. Action potential rheobase levels were decreased when nociceptive trigeminal ganglion neurons were cooled from 24°C down to 12°C or when extracellular pH levels were reduced from 7.3 to 6. This indicates that the excitability of nociceptive-like trigeminal ganglion neurons was increased at the cooling temperatures and low pH. The decreases of action potential rheobase levels were accompanied by increases of trigeminal ganglion neuron input resistances at cooling temperatures and low pH, suggesting a possible involvement of background K+ channels. Cooling temperatures and low pH suppressed voltage-activated inward Na+ currents and also voltage-dependent outward K+ currents in nociceptive-like trigeminal ganglion neurons. Voltage-dependent outward K+ currents in nociceptive-like trigeminal ganglion neurons consist of inactivating A-type K+ currents and non-inactivating type K+ currents, and the former were more sensitive to cooling temperatures and low pH. Collectively, suppressing multiple types of K+ channels may be associated with the enhanced excitability of nociceptive trigeminal ganglion neurons by cooling temperatures and low pH.


Asunto(s)
Frío/efectos adversos , Concentración de Iones de Hidrógeno , Nociceptores/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Temperatura , Potenciales de Acción/efectos de los fármacos , Animales , Masculino , Potenciales de la Membrana/efectos de los fármacos , Nocicepción/efectos de los fármacos , Ratas Sprague-Dawley , Ganglio del Trigémino/efectos de los fármacos
5.
Mol Pain ; 14: 1744806917750995, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29313436

RESUMEN

Chemotherapy drugs such as oxaliplatin can increase nociceptive neuron excitability to result in neuropathic pain in orofacial and other regions in patients following chemotherapy. However, mechanisms underlying chemotherapy-induced increases of nociceptive neuron excitability are not fully understood. Kv4.3 channels are voltage-gated K+ channels mediating A-type K+ (IA) currents to control neuronal excitability. In the present study, we examined Kv4.3 channel expression on trigeminal neurons that innervate orofacial regions (V2 TG neurons) of rats using immunostaining method. We showed that strong Kv4.3 immunoreactivity (Kv4.3-ir) was present mainly in small-sized V2 TG neurons. The numbers of Kv4.3-ir positive V2 TG neurons were significantly reduced in oxaliplatin-treated rats, suggesting down-regulation of Kv4.3 channel expression on V2 TG neurons by the chemotherapy drug. Patch-clamp recordings from acutely dissociated rat V2 TG neurons showed that almost all nociceptive-like V2 TG neurons displayed IA currents with slow inactivation kinetics. The amplitudes of IA currents were significantly reduced in these nociceptive-like V2 TG neurons of oxaliplatin-treated group. Furthermore, we found that the excitability of nociceptive-like V2 TG neurons was significantly higher in the oxaliplatin-treated group than in the control group. These findings raise a possibility that down-regulation of Kv4.3 channels and IA currents in nociceptive V2 TG neurons is an underlying mechanism of oxaliplatin-induced orofacial neuropathic pain.


Asunto(s)
Regulación hacia Abajo , Activación del Canal Iónico , Neuronas/metabolismo , Compuestos Organoplatinos/farmacología , Canales de Potasio Shal/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Regulación hacia Abajo/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Oxaliplatino , Ratas Sprague-Dawley
6.
J Biol Chem ; 291(17): 9087-104, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26929410

RESUMEN

The Piezo2 channel is a newly identified mammalian mechanical transducer that confers rapidly adapting mechanically activated (RA-MA) currents in primary afferent neurons. The Piezo2 channels sense rapid membrane displacement, but it is not clear whether they are sensitive to osmotic swelling, which slowly increases static plasma membrane tension (SPMT). Here, we show that SPMT exerts a profound impact on the mechanical sensitivity of RA-MA channels in primary afferent neurons. RA-MA currents are greatly enhanced, and the mechanical threshold was reduced in both primary afferent neurons of rat dorsal root ganglia (DRG) and HEK293 cells heterologously expressing Piezo2 when these cells undergo osmotic swelling to increase SPMT. Osmotic swelling switches the kinetics of RA-MA currents to the slowly adapting type in both cultured DRG neurons and HEK293 cells heterologously expressing Piezo2. The potentiation of RA-MA currents is abolished when cultured DRG neurons are treated with cytochalasin D, an actin filament disruptor that prevents SPMT of cultured DRG neurons from an increase by osmotic swelling. Osmotic swelling significantly increases DRG neuron mechano-excitability such that a subthreshold mechanical stimulus can result in action potential firing. Behaviorally, the mechanical hind paw withdrawal threshold in rats is reduced following the injection of a hypotonic solution, but this osmotic effect is abolished when cytochalasin D or Gd(3+) is co-administered with the hypo-osmotic solution. Taken together, our findings suggest that Piezo2-mediated mechanotransduction is regulated by SPMT in primary afferent neurons. Because SPMT can be changed by multiple biological factors, our findings may have broad implications in mechanical sensitivity under physiological and pathological conditions.


Asunto(s)
Membrana Celular/metabolismo , Ganglios Espinales/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Neuronas Aferentes/metabolismo , Presión Osmótica/fisiología , Animales , Membrana Celular/genética , Células Cultivadas , Femenino , Ganglios Espinales/citología , Células HEK293 , Humanos , Canales Iónicos/genética , Masculino , Neuronas Aferentes/citología , Ratas , Ratas Sprague-Dawley , Tensión Superficial
7.
Mol Pain ; 13: 1744806917724715, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28741430

RESUMEN

Abstract: Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.


Asunto(s)
Carbamatos/farmacología , Dolor Facial/tratamiento farmacológico , Canal de Potasio KCNQ2/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Fenilendiaminas/farmacología , Ganglio del Trigémino/efectos de los fármacos , Animales , Regulación hacia Abajo , Dolor Facial/patología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Masculino , Neuralgia/patología , Neuronas/efectos de los fármacos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Ratas Sprague-Dawley , Núcleo Caudal del Trigémino/efectos de los fármacos , Núcleo Caudal del Trigémino/patología , Ganglio del Trigémino/patología
8.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27030723

RESUMEN

BACKGROUND: A growing body of evidence suggests that ATP-gated P2X3 receptors (P2X3Rs) are implicated in chronic pain. We address the possibility that stable, synthetic analogs of diadenosine tetraphosphate (Ap4A) might induce antinociceptive effects by inhibiting P2X3Rs in peripheral sensory neurons. RESULTS: The effects of two stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) are studied firstly in vitro on HEK293 cells expressing recombinant rat P2XRs (P2X2Rs, P2X3Rs, P2X4Rs, and P2X7Rs) and then using native rat brain cells (cultured trigeminal, nodose, or dorsal root ganglion neurons). Thereafter, the action of these stable, synthetic Ap4A analogs on inflammatory pain and thermal hyperalgesia is studied through the measurement of antinociceptive effects in formalin and Hargreaves plantar tests in rats in vivo. In vitro inhibition of rat P2X3Rs (not P2X2Rs, P2X4Rs nor P2X7Rs) is shown to take place mediated by high-affinity desensitization (at low concentrations; IC50 values 100-250 nM) giving way to only weak partial agonism at much higher concentrations (EC50 values ≥ 10 µM). Similar inhibitory activity is observed with human recombinant P2X3Rs. The inhibitory effects of AppNHppA on nodose, dorsal root, and trigeminal neuron whole cell currents suggest that stable, synthetic Ap4A analogs inhibit homomeric P2X3Rs in preference to heteromeric P2X2/3Rs. Both Ap4A analogs mediate clear inhibition of pain responses in both in vivo inflammation models. CONCLUSIONS: Stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) being weak partial agonist provoke potent high-affinity desensitization-mediated inhibition of homomeric P2X3Rs at low concentrations. Therefore, both analogs demonstrate clear potential as potent analgesic agents for use in the management of chronic pain associated with heightened P2X3R activation.


Asunto(s)
Fosfatos de Dinucleósidos/uso terapéutico , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Dolor/complicaciones , Dolor/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Receptores Purinérgicos P2X3/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Fosfatos de Dinucleósidos/farmacología , Células HEK293 , Humanos , Hiperalgesia/complicaciones , Hiperalgesia/tratamiento farmacológico , Inyecciones Subcutáneas , Masculino , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas Wistar , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
9.
Mol Pain ; 11: 29, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25986602

RESUMEN

BACKGROUND: Previous studies have shown that increased excitability of capsaicin-sensitive DRG neurons and thermal hyperalgesia in rats with short-term (2-4 weeks) streptozotocin-induced diabetes is mediated by upregulation of T-type Ca(2+) current. In longer-term diabetes (after the 8th week) thermal hyperalgesia is changed to hypoalgesia that is accompanied by downregulation of T-type current in capsaicin-sensitive small-sized nociceptors. At the same time pain symptoms of diabetic neuropathy other than thermal persist in STZ-diabetic animals and patients during progression of diabetes into later stages suggesting that other types of DRG neurons may be sensitized and contribute to pain. In this study, we examined functional expression of T-type Ca(2+) channels in capsaicin-insensitive DRG neurons and excitability of these neurons in longer-term diabetic rats and in thermally hypoalgesic diabetic rats. RESULTS: Here we have demonstrated that in STZ-diabetes T-type current was upregulated in capsaicin-insensitive low-pH-sensitive small-sized nociceptive DRG neurons of longer-term diabetic rats and thermally hypoalgesic diabetic rats. This upregulation was not accompanied by significant changes in biophysical properties of T-type channels suggesting that a density of functionally active channels was increased. Sensitivity of T-type current to amiloride (1 mM) and low concentration of Ni(2+) (50 µM) implicates prevalence of Cav3.2 subtype of T-type channels in the capsaicin-insensitive low-pH-sensitive neurons of both naïve and diabetic rats. The upregulation of T-type channels resulted in the increased neuronal excitability of these nociceptive neurons revealed by a lower threshold for action potential initiation, prominent afterdepolarizing potentials and burst firing. Sodium current was not significantly changed in these neurons during long-term diabetes and could not contribute to the diabetes-induced increase of neuronal excitability. CONCLUSIONS: Capsaicin-insensitive low-pH-sensitive type of DRG neurons shows diabetes-induced upregulation of Cav3.2 subtype of T-type channels. This upregulation results in the increased excitability of these neurons and may contribute to nonthermal nociception at a later-stage diabetes.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canales de Calcio Tipo T/metabolismo , Diabetes Mellitus Experimental/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Capsaicina/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos
10.
Biochim Biophys Acta ; 1832(5): 636-49, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23376589

RESUMEN

Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8weeks of diabetes development. Here we found that 6-7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception. The proportion of IB4-positive capsaicin-sensitive small DRG neurons, strongly involved in thermal nociception, was not altered under different types of PDN implying differential changes at cellular and molecular level. We further focused on properties of T-type calcium and TRPV1 channels, which are known to be involved in Ca(2+) signaling and pathological nociception. Indeed, TRPV1-mediated signaling in these neurons was downregulated under hypo- and normalgesia and upregulated under hyperalgesia. A complex interplay between diabetes-induced changes in functional expression of Cav3.2 T-type calcium channels and depolarizing shift of their steady-state inactivation resulted in upregulation of these channels under hyper- and normalgesia and their downregulation under hypoalgesia. As a result, T-type window current was increased by several times under hyperalgesia partially underlying the increased resting [Ca(2+)]i observed in the hyperalgesic rats. At the same time Cav3.2-dependent Ca(2+) signaling was upregulated in all types of PDN. These findings indicate that alterations in functioning of Cav3.2 T-type and TRPV1 channels, specific for each type of PDN, may underlie the variety of pain syndromes induced by type 1 diabetes.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas/fisiopatología , Canales Catiónicos TRPV/fisiología , Animales , Calcio/metabolismo , Capsaicina/farmacología , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/fisiopatología , Neuropatías Diabéticas/etiología , Ganglios Espinales/citología , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Masculino , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Fármacos del Sistema Sensorial/farmacología
11.
Neural Plast ; 2014: 938235, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24693454

RESUMEN

T-type Ca²âº channels are known as important participants of nociception and their remodeling contributes to diabetes-induced alterations of pain sensation. In this work we have established that about 30% of rat nonpeptidergic thermal C-type nociceptive (NTCN) neurons of segments L4-L6 express a slow T-type Ca²âº current (T-current) while a fast T-current is expressed in the other 70% of these neurons. Streptozotocin-induced diabetes in young rats resulted in thermal hyperalgesia, hypoalgesia, or normalgesia 5-6 weeks after the induction. Our results show that NTCN neurons obtained from hyperalgesic animals do not express the slow T-current. Meanwhile, the fraction of neurons expressing the slow T-current did not significantly change in the hypo- and normalgesic diabetic groups. Moreover, the peak current density of fast T-current was significantly increased only in the neurons of hyperalgesic group. In contrast, the peak current density of slow T-current was significantly decreased in the hypo- and normalgesic groups. Experimental diabetes also resulted in a depolarizing shift of steady-state inactivation of fast T-current in the hyperalgesic group and slow T-current in the hypo- and normalgesic groups. We suggest that the observed changes may contribute to expression of different types of peripheral diabetic neuropathy occurring during the development of diabetes mellitus.


Asunto(s)
Canales de Calcio Tipo T/biosíntesis , Canales de Calcio Tipo T/fisiología , Neuropatías Diabéticas/fisiopatología , Nociceptores/fisiología , Células Receptoras Sensoriales/fisiología , Algoritmos , Animales , Conducta Animal/fisiología , Canales de Calcio Tipo T/metabolismo , Diabetes Mellitus Experimental/patología , Ganglios Espinales/fisiopatología , Calor , Hiperalgesia/fisiopatología , Procesamiento de Imagen Asistido por Computador , Cinética , Dolor/fisiopatología , Técnicas de Placa-Clamp , Lectinas de Plantas , Ratas
12.
PLoS One ; 18(7): e0288356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440542

RESUMEN

Patients with systemic lupus erythematosus (SLE) often suffer from chronic pain. Little is known about the peripheral mechanisms underlying the genesis of chronic pain induced by SLE. The aim of this study was to investigate whether and how membrane properties in nociceptive neurons in the dorsal root ganglions (DRGs) are altered by SLE. We found elevation of resting membrane potentials, smaller capacitances, lower action potential thresholds and rheobases in nociceptive neurons in the DRGs from MRL/lpr mice (an SLE mouse model) with thermal hyperalgesia. DRGs from MRL/lpr mice had increased protein expressions in TNFα, IL-1ß, and phosphorylated ERK but suppressed AMPK activity, and no changes in sodium channel 1.7 protein expression. We showed that intraplantar injection of Compound C (an AMPK inhibitor) induced thermal hyperalgesia in normal mice while intraplantar injection of AICAR (an AMPK activator) reduced thermal hyperalgesia in MRL/Lpr mice. Upon inhibition of AMPK membrane properties in nociceptive neurons from normal control mice could be rapidly switched to those found in SLE mice with thermal hyperalgesia. Our study indicates that increased excitability in peripheral nociceptive sensory neurons contributes to the genesis of thermal hyperalgesia in mice with SLE, and AMPK regulates membrane properties in nociceptive sensory neurons as well as thermal hyperalgesia in mice with SLE. Our study provides a basis for targeting signaling pathways regulating membrane properties of peripheral nociceptive neurons as a means for conquering chronic pain caused by SLE.


Asunto(s)
Dolor Crónico , Lupus Eritematoso Sistémico , Ratones , Animales , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Dolor Crónico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Nocicepción , Ratones Endogámicos MRL lpr , Células Receptoras Sensoriales/metabolismo , Lupus Eritematoso Sistémico/metabolismo
13.
Ann Neurol ; 67(5): 680-3, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20437566

RESUMEN

P2X3 purinoreceptors expressed in mammalian sensory neurons play a key role in several processes, including pain perception. From the venom of the Central Asian spider Geolycosa sp., we have isolated a novel peptide, named purotoxin-1 (PT1), which is to our knowledge the first natural molecule exerting powerful and selective inhibitory action on P2X3 receptors. PT1 dramatically slows down the removal of desensitization of these receptors. The peptide demonstrates potent antinociceptive properties in animal models of inflammatory pain.


Asunto(s)
Dolor/tratamiento farmacológico , Dolor/metabolismo , Péptidos/uso terapéutico , Receptores Purinérgicos P2/metabolismo , Venenos de Araña/química , Adenosina Trifosfato/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Chondrus , Citidina Trifosfato/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ganglios Espinales/citología , Humanos , Espectroscopía de Resonancia Magnética/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Inflamación Neurogénica/inducido químicamente , Inflamación Neurogénica/complicaciones , Dolor/etiología , Técnicas de Placa-Clamp/métodos , Antagonistas del Receptor Purinérgico P2 , Ratas , Ratas Wistar , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X3 , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Transfección/métodos
14.
Neurosci Lett ; 694: 208-214, 2019 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-30503926

RESUMEN

Orofacial muscle pain is a significant clinical problem because it affects eating, speaking, and other orofacial functions in patients. However, mechanisms underlying orofacial muscle pain are not fully understood. In the present study we induced orofacial muscle pain by injecting Complete Freund's Adjuvant (CFA) into masseter muscle of rats and assessed pain by the orofacial operant test. In comparison with the control group, CFA-injected animals (CFA group) showed decreases in operant behaviors, suggesting the presence of orofacial pain. Trigeminal ganglion (TG) neurons innervating masseter muscles were retrograde-labeled with DiI and their electrophysiological properties studied using patch-clamp recordings. About 20% of DiI-labeled TG neurons showed spontaneous action potentials (APs) in the CFA group but none in the control group. AP rheobase levels were significantly lower in DiI-labeled TG neurons of the CFA group than in the control group. Membrane input resistance of DiI-labeled TG neurons was significantly higher in the CFA group than in the control group. Several other membrane parameters were also different between DiI-labeled TG neurons of the CFA and control groups. Voltage-dependent currents were examined and the most significant changes following CFA were background K+ currents, which showed significantly smaller in DiI-labeled TG neurons of CFA group compared to the control group. Collectively, orofacial muscle pain in CFA model is accompanied with changes of electrophysiological properties and background K+ currents in TG neurons that innervate masseter muscles.


Asunto(s)
Condicionamiento Operante , Dolor Facial/fisiopatología , Músculo Masetero/fisiopatología , Mialgia/fisiopatología , Miositis/fisiopatología , Neuronas/fisiología , Ganglio del Trigémino/fisiopatología , Potenciales de Acción , Animales , Conducta Animal , Dolor Facial/inducido químicamente , Dolor Facial/psicología , Adyuvante de Freund/administración & dosificación , Masculino , Músculo Masetero/inervación , Mialgia/inducido químicamente , Mialgia/psicología , Miositis/complicaciones , Ratas Sprague-Dawley
15.
Mol Brain ; 11(1): 40, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980241

RESUMEN

Leak K+ currents are mediated by two-pore domain K+ (K2P) channels and are involved in controlling neuronal excitability. Of 15 members of K2P channels cloned so far, TRAAK, TREK-1, and TREK-2 are temperature sensitive. In the present study, we show that strong immunoreactivity of TRAAK, TREK-1 and TREK-2 channels was present mainly in small-sized dorsal root ganglion (DRG) neurons of rats. The percentages of neurons with strong immunoreactivity of TRAAK, TREK-1 and TREK-2 channels were 27, 23, and 20%, respectively. Patch-clamp recordings were performed to examine isolated leak K+ currents on acutely dissociated small-sized rat DRG neurons at room temperature of 22 °C, cool temperature of 14 °C and warm temperature of 30 °C. In majority of small-sized DRG neurons recorded (76%), large leak K+ currents were observed at 22 °C and were inhibited at 14 °C and potentiated at 30 °C, suggesting the presence of temperature-sensitive K2P channels in these neurons. In a small population (18%) of small-sized DRG neurons, cool temperature of 14 °C evoked a conductance which was consistent with TRPM8 channel activation in cold-sensing DRG neurons. In these DRG neurons, leak K+ currents were very small at 22 °C and were not potentiated at 30 °C, suggesting that few temperature-sensitive K2P channels was present in cold-sensing DRG neurons. For DRG neurons with temperature-sensitive leak K+ currents, riluzole, norfluoxetine and prostaglandin F2α (PGE2α) inhibited the leak K+ currents at both 30 °C and 22 °C degree, and did not have inhibitory effects at 14 °C. Collectively, the observed temperature-sensitive leak K+ currents are consistent with the expression of temperature-sensitive K2P channels in small-sized DRG neurons.


Asunto(s)
Ganglios Espinales/metabolismo , Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio/metabolismo , Temperatura , Animales , Tamaño de la Célula/efectos de los fármacos , Fluoxetina/análogos & derivados , Fluoxetina/farmacología , Ganglios Espinales/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratas , Riluzol/farmacología
16.
Sci Rep ; 8(1): 10285, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980697

RESUMEN

Upregulation of Ca2+-permeable AMPA receptors (CP-AMPARs) in dorsal horn (DH) neurons has been causally linked to persistent inflammatory pain. This upregulation, demonstrated for both synaptic and extrasynaptic AMPARs, depends on the protein kinase C alpha (PKCα) activation; hence, spinal PKC inhibition has alleviated peripheral nociceptive hypersensitivity. However, whether targeting the spinal PKCα would alleviate both pain development and maintenance has not been explored yet (essential to pharmacological translation). Similarly, if it could balance the upregulated postsynaptic CP-AMPARs also remains unknown. Here, we utilized pharmacological and genetic inhibition of spinal PKCα in various schemes of pain treatment in an animal model of long-lasting peripheral inflammation. Pharmacological inhibition (pre- or post-treatment) reduced the peripheral nociceptive hypersensitivity and accompanying locomotive deficit and anxiety in rats with induced inflammation. These effects were dose-dependent and observed for both pain development and maintenance. Gene-therapy (knockdown of PKCα) was also found to relieve inflammatory pain when applied as pre- or post-treatment. Moreover, the revealed therapeutic effects were accompanied with the declined upregulation of CP-AMPARs at the DH synapses between primary afferents and sensory interneurons. Our results provide a new focus on the mechanism-based pain treatment through interference with molecular mechanisms of AMPAR trafficking in central pain pathways.


Asunto(s)
Silenciador del Gen , Inflamación/prevención & control , Dolor/prevención & control , Proteína Quinasa C-alfa/antagonistas & inhibidores , Receptores AMPA/metabolismo , Médula Espinal/enzimología , Sinapsis/fisiología , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/patología , Interneuronas/metabolismo , Masculino , Dolor/metabolismo , Dolor/patología , Manejo del Dolor , Células del Asta Posterior/metabolismo , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Células Receptoras Sensoriales/metabolismo
17.
Neurosci Lett ; 634: 70-75, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27720807

RESUMEN

Primary afferent fibers use mechanically activated (MA) currents to transduce innocuous and noxious mechanical stimuli. However, it is largely unknown about the differences in MA currents between the afferents for sensing innocuous and noxious stimuli. In the present study, we used dorsal root ganglion (DRG) neurons acutely dissociated from rats and studied their MA currents and also their intrinsic membrane properties. Recorded from small-sized DRG neurons, we found that most of these neurons were mechanically sensitive (MS) showing MA currents. The MS neurons could be classified into nociceptive-like mechanically sensitive (Noci-MS) and non-nociceptive-like mechanically sensitive (nonNoci-MS) neurons based on their action potential shapes. Noci-MS neurons responded to mechanical stimulation with three types of MA currents, rapidly adapting (RA), intermediately adapting (IA), and slowly adapting (SA) currents. In contrast, almost all nonNoci-MS neurons showed RA current type in response to mechanical stimulation. Mechanical thresholds had a broad range for both nonNoci-MS and Noci-MS neurons, and the thresholds were not significantly different between them. However, MA current densities were significantly smaller in Noci-MS than in nonNoci-MS neurons. Noci-MS and nonNoci-MS neurons also showed significant differences in their electrophysiological properties including action potential (AP) thresholds and AP firing patterns. These differences may contribute to the differential sensory encoding for innocuous and noxious mechanical stimuli.


Asunto(s)
Ganglios Espinales/citología , Potenciales de la Membrana , Neuronas Aferentes/fisiología , Potenciales de Acción , Animales , Mecanotransducción Celular , Neuronas Aferentes/citología , Nocicepción , Ratas Sprague-Dawley
18.
J Pain ; 14(2): 182-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23374940

RESUMEN

UNLABELLED: Persistent inflammation promotes internalization of synaptic GluR2-containing, Ca(2+)-impermeable AMPA receptors (AMPARs) and insertion of GluR1-containing, Ca(2+)-permeable AMPARs at extrasynaptic sites in dorsal horn neurons. Previously we have shown that internalization of synaptic GluR2-containing AMPARs requires activation of spinal cord protein kinase C alpha (PKCα), but molecular mechanisms that underlie altered trafficking of extrasynaptic AMPARs are unclear. Here, using antisense (AS) oligodeoxynucleotides (ODN) that specifically knock down PKCα, we found that a decrease in dorsal horn PKCα expression prevents complete Freund's adjuvant (CFA)-induced increase in functional expression of extrasynaptic Ca(2+)-permeable AMPARs in substantia gelatinosa (SG) neurons of the rat spinal cord. Augmented AMPA-induced currents and associated [Ca(2+)](i) transients were abolished, and the current rectification 1 day post-CFA was reversed. These changes were observed specifically in SG neurons characterized by intrinsic tonic firing properties, but not in those that exhibited strong adaptation. Finally, dorsal horn PKCα knockdown produced an antinociceptive effect on CFA-induced thermal and mechanical hypersensitivity during the maintenance period of inflammatory pain, indicating a role for PKCα in persistent inflammatory pain maintenance. Our results indicate that inflammation-induced trafficking of extrasynaptic Ca(2+)-permeable AMPARs in tonically firing SG neurons depends on PKCα, and that this PKCα-dependent trafficking may contribute to persistent inflammatory pain maintenance. PERSPECTIVE: This study shows that PKCα knockdown blocks inflammation-induced upregulation of extrasynaptic Ca(2+)-permeable AMPARs in dorsal horn neurons and produces an antinociceptive effect during the maintenance period of inflammatory pain. These findings have potential implications for use of PKCα gene-silencing therapy to prevent and/or treat persistent inflammatory pain.


Asunto(s)
Inflamación/enzimología , Inflamación/metabolismo , Dolor/fisiopatología , Células del Asta Posterior/fisiología , Proteína Quinasa C-alfa/fisiología , Receptores AMPA/fisiología , Animales , Conducta Animal/efectos de los fármacos , Western Blotting , Calcio/metabolismo , Adyuvante de Freund , Procesamiento de Imagen Asistido por Computador , Inflamación/complicaciones , Inyecciones Espinales , Masculino , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/farmacología , Dolor/inducido químicamente , Dolor/etiología , Técnicas de Placa-Clamp , Proteína Quinasa C-alfa/genética , Ratas , Regulación hacia Arriba/fisiología
19.
Front Physiol ; 3: 391, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060815

RESUMEN

Persistent peripheral inflammation changes AMPA receptor (AMPAR) trafficking in dorsal horn neurons by promoting internalization of GluR2-containing, Ca(2+)-impermeable AMPARs from the synapses and by increasing insertion of GluR1-containing, Ca(2+)-permeable AMPARs in extrasynaptic plasma membrane. These changes contribute to the maintenance of persistent inflammatory pain. However, much less is known about AMPAR trafficking during development of persistent inflammatory pain and direct studies of extrasynaptic AMPARs functioning during this period are still lacking. Using Complete Freund's adjuvant (CFA)-induced model of long-lasting peripheral inflammation, we showed that remarkable hyperalgesia and allodynia developes in 1-3 h after intraplantar CFA injection. By utilizing patch-clamp recording combined with Ca(2+) imaging, we found a significant upregulation of extrasynaptic AMPARs in substantia gelatinosa (SG) neurons of the rat spinal cord 2-3 h after CFA injection. This upregulation was manifested as a robust increase in the amplitude of AMPAR-mediated currents 2-3 h post-CFA. These changes were observed specifically in SG neurons characterized by intrinsic tonic firing properties, but not in those that exhibited strong adaptation. Our results indicate that CFA-induced inflammation increases functional expression of extrasynaptic AMPARs in tonically firing SG neurons during development of pain hypersensitivity and that this increase may contribute to the development of peripheral persistent pain.

20.
Eur J Pharmacol ; 629(1-3): 68-72, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20035744

RESUMEN

It has recently been shown that antinociceptive tolerance develops by repeated systemic administration of non-steroidal anti-inflammatory drugs (NSAIDs) metamizol and lysine-acetylsalicylate. This is similar to the tolerance observed with opioid-induced analgesia [Vanegas and Tortorici, 2002, Cell and Mol. Neurobiol. 22, 655-661]. In the present study, we investigated the development of tolerance to the analgesic effects of the additional NSAIDs analgine, ketorolac and xefocam in juvenile and adult rats. After injection of each drug, tail-flick latencies were significantly elevated on the first day followed by a progressive decrease in tail-flick latency (i.e., tolerance) over the 5-day period, as well as cross-tolerance to morphine-induced analgesia. Tolerance to the analgesic effect of all three NSAIDs developed more rapidly in juvenile compared to adult rats. Pretreatment with naloxone completely prevented the analgesic effects of these drugs in tail-flick and hot plate tests for both juvenile and adult rats. Moreover, each NSAID exhibited cross-tolerance when tolerance to morphine had been induced by systemic morphine delivered repeatedly over 5-day period in both age groups. Our data confirm other recent findings that tolerance to the analgesic action of NSAIDs may depend on an opiate-mediated mechanism.


Asunto(s)
Analgésicos/farmacología , Tolerancia a Medicamentos , Factores de Edad , Analgésicos/administración & dosificación , Analgésicos Opioides , Animales , Conducta Animal/efectos de los fármacos , Ketorolaco/administración & dosificación , Ketorolaco/farmacología , Morfina/administración & dosificación , Morfina/farmacología , Naloxona/farmacología , Piroxicam/administración & dosificación , Piroxicam/análogos & derivados , Piroxicam/farmacología , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA