Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 21(5): 798-810, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21451113

RESUMEN

Emerging evidence suggests that microRNAs (miRNAs), an abundant class of ∼22-nucleotide small regulatory RNAs, play key roles in controlling the post-transcriptional genetic programs in stem and progenitor cells. Here we systematically examined miRNA expression profiles in various adult tissue-specific stem cells and their differentiated counterparts. These analyses revealed miRNA programs that are common or unique to blood, muscle, and neural stem cell populations and miRNA signatures that mark the transitions from self-renewing and quiescent stem cells to proliferative and differentiating progenitor cells. Moreover, we identified a stem/progenitor transition miRNA (SPT-miRNA) signature that predicts the effects of genetic perturbations, such as loss of PTEN and the Rb family, AML1-ETO9a expression, and MLL-AF10 transformation, on self-renewal and proliferation potentials of mutant stem/progenitor cells. We showed that some of the SPT-miRNAs control the self-renewal of embryonic stem cells and the reconstitution potential of hematopoietic stem cells (HSCs). Finally, we demonstrated that SPT-miRNAs coordinately regulate genes that are known to play roles in controlling HSC self-renewal, such as Hoxb6 and Hoxa4. Together, these analyses reveal the miRNA programs that may control key processes in normal and aberrant stem and progenitor cells, setting the foundations for dissecting post-transcriptional regulatory networks in stem cells.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , MicroARNs/genética , Mutación , Mioblastos/citología , Mioblastos/metabolismo , Células-Madre Neurales , Especificidad de Órganos , Células Madre/citología
2.
J Biol Chem ; 285(33): 25831-40, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20558726

RESUMEN

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the Lys(48)-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7, known to polyubiquitinate a variety of substrates phosphorylated by GSK3, is dispensable for BCL-3 degradation. Thus, our data defined a unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas del Linfoma 3 de Células B , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Inmunoprecipitación , Lisina/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica/genética , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Ubiquitinación/fisiología
3.
Trends Biochem Sci ; 30(1): 43-52, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15653325

RESUMEN

Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas I-kappa B/metabolismo , Linfoma de Células B/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Animales , Diseño de Fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/patología , Fosforilación , Transducción de Señal/fisiología , Factor de Transcripción ReIA
4.
Exp Mol Med ; 52(12): 1898-1907, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268834

RESUMEN

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and a leading cause of cancer-related deaths worldwide. Ninety percent of HCC cases arise from cirrhosis, during which liver cells undergo chronic cycles of necrosis and regeneration. The complex genomic landscape of HCC has been extensively investigated to draw correlations between recurrently mutated pathways and patient prognosis. However, our limited success with targeted therapy shows that knowing the presence of somatic mutations alone is insufficient for us to gauge the full spectrum of their functional consequences in the context of tumor evolution. In addition, the current molecular classification of HCC offers little information on the relationship between the molecular features and immunological properties of HCC tumors and their immune microenvironment. This review introduces current challenges and advancements made in HCC surveillance, diagnosis, and treatment. We also discuss the suite of HCC-associated genetic changes and describe recent studies that provide evidence for an evolving functional model and its implications for understanding and targeting HCC progression.


Asunto(s)
Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Animales , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/epidemiología , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/epidemiología , Técnicas de Diagnóstico Molecular/métodos , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
5.
Cell Rep ; 30(9): 3105-3116.e4, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130910

RESUMEN

The mammalian heart is incapable of regenerating a sufficient number of cardiomyocytes to ameliorate the loss of contractile muscle after acute myocardial injury. Several reports have demonstrated that mononucleated cardiomyocytes are more responsive than are binucleated cardiomyocytes to pro-proliferative stimuli. We have developed a strategy to isolate and characterize highly enriched populations of mononucleated and binucleated cardiomyocytes at various times of development. Our results suggest that an E2f/Rb transcriptional network is central to the divergence of these two populations and that remnants of the differences acquired during the neonatal period remain in adult cardiomyocytes. Moreover, inducing binucleation by genetically blocking the ability of cardiomyocytes to complete cytokinesis leads to a reduction in E2f target gene expression, directly linking the E2f pathway with nucleation. These data identify key molecular differences between mononucleated and binucleated mammalian cardiomyocytes that can be used to leverage cardiomyocyte proliferation for promoting injury repair in the heart.


Asunto(s)
Núcleo Celular/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Núcleo Celular/ultraestructura , Proliferación Celular , Separación Celular , Regulación hacia Abajo/genética , Factores de Transcripción E2F/metabolismo , Citometría de Flujo , Fase G1 , Ratones Noqueados , Miocitos Cardíacos/ultraestructura , Proteínas Proto-Oncogénicas/metabolismo , Regeneración , Proteína de Retinoblastoma/metabolismo , Fase S
6.
Nat Commun ; 10(1): 1909, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015417

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. ß-catenin is widely thought to be a major oncogene in HCC based on the frequency of mutations associated with aberrant Wnt signaling in HCC patients. Challenging this model, our data reveal that ß-catenin nuclear accumulation is restricted to the late stage of the disease. Until then, ß-catenin is primarily located at the plasma membrane in complex with multiple cadherin family members where it drives tumor cell survival by enhancing the signaling of growth factor receptors such as EGFR. Therefore, our study reveals the evolving nature of ß-catenin in HCC to establish it as a compound tumor promoter during the progression of the disease.


Asunto(s)
Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Proteína Wnt3A/genética , beta Catenina/genética , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Progresión de la Enfermedad , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Noqueados , Estadificación de Neoplasias , Factores Sexuales , Transducción de Señal , Carga Tumoral , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
7.
J Exp Med ; 216(9): 2150-2169, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31239386

RESUMEN

We have identified a precursor that differentiates into granulocytes in vitro and in vivo yet belongs to the monocytic lineage. We have termed these cells monocyte-like precursors of granulocytes (MLPGs). Under steady state conditions, MLPGs were absent in the spleen and barely detectable in the bone marrow (BM). In contrast, these cells significantly expanded in tumor-bearing mice and differentiated to polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Selective depletion of monocytic cells had no effect on the number of granulocytes in naive mice but decreased the population of PMN-MDSCs in tumor-bearing mice by 50%. The expansion of MLPGs was found to be controlled by the down-regulation of Rb1, but not IRF8, which is known to regulate the expansion of PMN-MDSCs from classic granulocyte precursors. In cancer patients, putative MLPGs were found within the population of CXCR1+CD15-CD14+HLA-DR-/lo monocytic cells. These findings describe a mechanism of abnormal myelopoiesis in cancer and suggest potential new approaches for selective targeting of MDSCs.


Asunto(s)
Monocitos/patología , Células Supresoras de Origen Mieloide/patología , Neoplasias/patología , Neutrófilos/patología , Adulto , Anciano , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas de Unión a Retinoblastoma/metabolismo
8.
J Exp Med ; 214(7): 1901-1912, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28550162

RESUMEN

Prolonged exit from quiescence by hematopoietic stem cells (HSCs) progressively impairs their homeostasis in the bone marrow through an unidentified mechanism. We show that Rb proteins, which are major enforcers of quiescence, maintain HSC homeostasis by positively regulating thrombopoietin (Tpo)-mediated Jak2 signaling. Rb family protein inactivation triggers the progressive E2f-mediated transactivation of Socs3, a potent inhibitor of Jak2 signaling, in cycling HSCs. Aberrant activation of Socs3 impairs Tpo signaling and leads to impaired HSC homeostasis. Therefore, Rb proteins act as a central hub of quiescence and homeostasis by coordinating the regulation of both cell cycle and Jak2 signaling in HSCs.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Animales , Ciclo Celular/genética , División Celular/genética , Proliferación Celular/genética , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Perfilación de la Expresión Génica/métodos , Immunoblotting , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratones Noqueados , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Interferencia de ARN , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Trombopoyetina/farmacología , Activación Transcripcional
9.
Biochem Pharmacol ; 72(9): 1069-80, 2006 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-16854381

RESUMEN

The NF-kappaB family of transcription factors plays key roles in the control of cell proliferation and apoptosis. Constitutive NF-kappaB activation is a common feature for most haematological malignancies and is therefore believed to be a crucial event for enhanced proliferation and survival of these malignant cells. In this review, we will describe the molecular mechanisms underlying NF-kappaB deregulation in haematological malignancies and will highlight what is still unclear in this field, 20 years after the discovery of this transcription factor.


Asunto(s)
Apoptosis/fisiología , Proliferación Celular , Neoplasias Hematológicas/metabolismo , FN-kappa B/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Neoplasias Hematológicas/patología , Humanos , FN-kappa B/fisiología
10.
Nat Commun ; 6: 10028, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26639898

RESUMEN

Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy.


Asunto(s)
ADN Helicasas/metabolismo , Factor de Transcripción E2F1/genética , Neoplasias Hepáticas/genética , Animales , ADN Helicasas/genética , Progresión de la Enfermedad , Factor de Transcripción E2F1/metabolismo , Regulación de la Expresión Génica , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Unión Proteica
11.
Cancer Res ; 74(22): 6565-6577, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25252918

RESUMEN

Bladder cancer is a highly prevalent human disease in which retinoblastoma (Rb) pathway inactivation and epigenetic alterations are common events. However, the connection between these two processes is still poorly understood. Here, we show that the in vivo inactivation of all Rb family genes in the mouse urothelium is sufficient to initiate bladder cancer development. The characterization of the mouse tumors revealed multiple molecular features of human bladder cancer, including the activation of E2F transcription factor and subsequent Ezh2 expression and the activation of several signaling pathways previously identified as highly relevant in urothelial tumors. These mice represent a genetically defined model for human high-grade superficial bladder cancer. Whole transcriptional characterizations of mouse and human bladder tumors revealed a significant overlap and confirmed the predominant role for Ezh2 in the downregulation of gene expression programs. Importantly, the increased tumor recurrence and progression in human patients with superficial bladder cancer is associated with increased E2F and Ezh2 expression and Ezh2-mediated gene expression repression. Collectively, our studies provide a genetically defined model for human high-grade superficial bladder cancer and demonstrate the existence of an Rb-E2F-Ezh2 axis in bladder whose disruption can promote tumor development.


Asunto(s)
Factores de Transcripción E2F/fisiología , Complejo Represivo Polycomb 2/fisiología , Proteína de Retinoblastoma/fisiología , Transducción de Señal/fisiología , Neoplasias de la Vejiga Urinaria/etiología , Animales , Progresión de la Enfermedad , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Recurrencia Local de Neoplasia/etiología , Complejo Represivo Polycomb 2/genética , Transcriptoma
12.
J Exp Med ; 210(6): 1087-97, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23669396

RESUMEN

Thymic involution during aging is a major cause of decreased production of T cells and reduced immunity. Here we show that inactivation of Rb family genes in young mice prevents thymic involution and results in an enlarged thymus competent for increased production of naive T cells. This phenotype originates from the expansion of functional thymic epithelial cells (TECs). In RB family mutant TECs, increased activity of E2F transcription factors drives increased expression of Foxn1, a central regulator of the thymic epithelium. Increased Foxn1 expression is required for the thymic expansion observed in Rb family mutant mice. Thus, the RB family promotes thymic involution and controls T cell production via a bone marrow-independent mechanism, identifying a novel pathway to target to increase thymic function in patients.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Silenciador del Gen , Genes de Retinoblastoma , Linfocitos T/fisiología , Timo/fisiología , Animales , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Epitelio/metabolismo , Epitelio/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación , Linfocitos T/metabolismo , Timo/metabolismo
13.
Genes Cancer ; 3(11-12): 670-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23634255

RESUMEN

Stem cells are a unique population that lies at the summit of any, or at least most, biological systems. They can differentiate in a variety of mature cell types, but they also have the ability to self-renew, that is, the capacity to divide and retain all the features of the mother cell. The regulation of self-renewal has been studied for many years, but several aspects of this regulation are still vague. The combined decision to divide and self-renew or differentiate suggests that the mechanisms that regulate self-renewal and cell cycle activity are intermingled. While inactivation of many cell cycle regulators impacts the physiological and pathological biology of stem cells, the exact mechanisms that link the decision to enter the cell cycle and the choice of the cellular fate are poorly understood. The multiplicity of signals and pathways regulating self-renewal add to the complexity of the phenomenon. Here, I will review the described links between the cell cycle and self-renewal and discuss the role of the niche in the regulation of both mechanisms.

14.
Dis Model Mech ; 4(5): 581-5, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21878458

RESUMEN

The retinoblastoma (RB) tumor suppressor belongs to a cellular pathway that plays a crucial role in restricting the G1-S transition of the cell cycle in response to a large number of extracellular and intracellular cues. Research in the last decade has highlighted the complexity of regulatory networks that ensure proper cell cycle progression, and has also identified multiple cellular functions beyond cell cycle regulation for RB and its two family members, p107 and p130. Here we review some of the recent evidence pointing to a role of RB as a molecular adaptor at the crossroads of multiple pathways, ensuring cellular homeostasis in different contexts. In particular, we discuss the pro- and anti-tumorigenic roles of RB during the early stages of cancer, as well as the importance of the RB pathway in stem cells and cell fate decisions.


Asunto(s)
Neoplasias/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Humanos , Neoplasias/patología , Transducción de Señal
15.
J Exp Med ; 208(10): 1963-76, 2011 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-21875955

RESUMEN

Hepatocellular carcinoma (HCC) is the third cancer killer worldwide with >600,000 deaths every year. Although the major risk factors are known, therapeutic options in patients remain limited in part because of our incomplete understanding of the cellular and molecular mechanisms influencing HCC development. Evidence indicates that the retinoblastoma (RB) pathway is functionally inactivated in most cases of HCC by genetic, epigenetic, and/or viral mechanisms. To investigate the functional relevance of this observation, we inactivated the RB pathway in the liver of adult mice by deleting the three members of the Rb (Rb1) gene family: Rb, p107, and p130. Rb family triple knockout mice develop liver tumors with histopathological features and gene expression profiles similar to human HCC. In this mouse model, cancer initiation is associated with the specific expansion of populations of liver stem/progenitor cells, indicating that the RB pathway may prevent HCC development by maintaining the quiescence of adult liver progenitor cells. In addition, we show that during tumor progression, activation of the Notch pathway via E2F transcription factors serves as a negative feedback mechanism to slow HCC growth. The level of Notch activity is also able to predict survival of HCC patients, suggesting novel means to diagnose and treat HCC.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Neoplasias Hepáticas/fisiopatología , Receptores Notch/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal/fisiología , Animales , Carcinoma Hepatocelular/patología , Línea Celular , Proliferación Celular , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Receptores Notch/genética , Proteína de Retinoblastoma/genética , Células Madre/fisiología , Transcripción Genética
16.
Mol Cell Biol ; 30(7): 1729-45, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20100864

RESUMEN

In cancer cells, the retinoblastoma tumor suppressor RB is directly inactivated by mutation in the RB gene or functionally inhibited by abnormal activation of cyclin-dependent kinase activity. While variations in RB levels may also provide an important means of controlling RB function in both normal and cancer cells, little is known about the mechanisms regulating RB transcription. Here we show that members of the RB and E2F families bind directly to the RB promoter. To investigate how the RB/E2F pathway may regulate Rb transcription, we generated reporter mice carrying an eGFP transgene inserted into a bacterial artificial chromosome containing most of the Rb gene. Expression of eGFP largely parallels that of Rb in transgenic embryos and adult mice. Using these reporter mice and mutant alleles for Rb, p107, and p130, we found that RB family members modulate Rb transcription in specific cell populations in vivo and in culture. Interestingly, while Rb is a target of the RB/E2F pathway in mouse and human cells, Rb expression does not strictly correlate with the cell cycle status of these cells. These experiments identify novel regulatory feedback mechanisms within the RB pathway in mammalian cells.


Asunto(s)
Factores de Transcripción E2F/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Transcripción Genética , Animales , Ciclo Celular/fisiología , Factores de Transcripción E2F/genética , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Genes Reporteros , Humanos , Ratones , Ratones Transgénicos , Células 3T3 NIH , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/genética , Distribución Tisular , Activación Transcripcional
17.
Mol Cell Biol ; 30(16): 4006-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20547759

RESUMEN

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kappaB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated effects on gene expression remain largely uncharacterized. Moreover, GSK3-mediated phosphorylation of BCL-3 triggers its degradation through the proteasome, but the proteins involved in this degradative pathway are poorly characterized. Biochemical purification of interacting partners of BCL-3 led to the identification of CtBP as a molecule required for the ability of BCL-3 to repress gene transcription. CtBP is also required for the oncogenic potential of BCL-3 and for its ability to inhibit UV-mediated cell apoptosis in keratinocytes. We also defined the E3 ligase TBLR1 as a protein involved in BCL-3 degradation through a GSK3-independent pathway. Thus, our data demonstrate that the LSD1/CtBP complex is required for the repressing abilities of an oncogenic I kappaB protein, and they establish a functional link between the E3 ligase TBLR1 and NF-kappaB.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Proteínas del Linfoma 3 de Células B , Línea Celular , Proteínas de Unión al ADN/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Células HeLa , Histona Demetilasas/metabolismo , Humanos , Ratones , FN-kappa B/metabolismo , Células 3T3 NIH , Oxidorreductasas N-Desmetilantes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Ubiquitinación
18.
J Cell Biol ; 191(4): 809-25, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21059851

RESUMEN

The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9-11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.


Asunto(s)
Diferenciación Celular/fisiología , Fase G1/fisiología , Proteína de Retinoblastoma/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/fisiología , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Teratoma/metabolismo , Teratoma/patología , Factores de Transcripción/metabolismo
19.
Cell Cycle ; 7(16): 2544-52, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18719374

RESUMEN

The RB tumor suppressor gene is mutated in a broad range of human cancers, including pediatric retinoblastoma. Strikingly, however, Rb mutant mice develop tumors of the pituitary and thyroid glands, but not retinoblastoma. Mouse genetics experiments have demonstrated that p107, a protein related to pRB, is capable of preventing retinoblastoma, but not pituitary tumors, in Rb-deficient mice. Evidence suggests that the basis for this compensatory function of p107 is increased transcription of the p107 gene in response to Rb inactivation. To begin to address the context-dependency of this compensatory role of p107 and to follow p107 expression in vivo, we have generated transgenic mice carrying an enhanced GFP (eGFP) reporter inserted into a bacterial artificial chromosome (BAC) containing the mouse p107 gene. Expression of the eGFP transgene parallels that of p107 in these transgenic mice and identifies cells with a broad range of expression level for p107, even within particular organs or tissues. We also show that loss of Rb results in the upregulation of p107 transcription in specific cell populations in vivo, including subpopulations of hematopoietic cells. Thus, p107 BAC-eGFP transgenic mice serve as a useful tool to identify distinct cell types in which p107 is expressed and may have key functions in vivo, and to characterize changes in cellular networks accompanying Rb deficiency.


Asunto(s)
Ciclo Celular , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Ratones Transgénicos , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Animales , Ciclo Celular/genética , Cromosomas Artificiales Bacterianos/genética , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Subgrupos Linfocitarios/metabolismo , Ratones , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Transgenes , Regulación hacia Arriba
20.
Cell Stem Cell ; 3(4): 416-28, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18940733

RESUMEN

Individual members of the retinoblastoma (Rb) tumor suppressor gene family serve critical roles in the control of cellular proliferation and differentiation, but the extent of their contributions is masked by redundant and compensatory mechanisms. Here we employed a conditional knockout strategy to simultaneously inactivate all three members, Rb, p107, and p130, in adult hematopoietic stem cells (HSCs). Rb family triple knockout (TKO) mice develop a cell-intrinsic myeloproliferation that originates from hyperproliferative early hematopoietic progenitors and is accompanied by increased apoptosis in lymphoid progenitor populations. Loss of quiescence in the TKO HSC pool is associated with an expansion of these mutant stem cells but also with an enhanced mobilization and an impaired reconstitution potential upon transplantation. The presence of a single p107 allele is sufficient to largely rescue these defects. Thus, Rb family members collectively maintain HSC quiescence and the balance between lymphoid and myeloid cell fates in the hematopoietic system.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Animales , Apoptosis/genética , Proliferación Celular , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Linfocitos/citología , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo , Trastornos Mieloproliferativos/etiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA