Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105767, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367672

RESUMEN

Approximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology. Here, two FNMTC families were studied, each with two members affected with TC. Ninety-four hereditary cancer predisposition genes were analyzed through next-generation sequencing, revealing two germline CHEK2 missense variants (c.962A > C, p.E321A and c.470T > C, p.I157T), which segregated with TC in each FNMTC family. p.E321A, located in the CHK2 protein kinase domain, is a rare variant, previously unreported in the literature. Conversely, p.I157T, located in CHK2 forkhead-associated domain, has been extensively described, having conflicting interpretations of pathogenicity. CHK2 proteins (WT and variants) were characterized using biophysical methods, molecular dynamics simulations, and immunohistochemistry. Overall, biophysical characterization of these CHK2 variants showed that they have compromised structural and conformational stability and impaired kinase activity, compared to the WT protein. CHK2 appears to aggregate into amyloid-like fibrils in vitro, which opens future perspectives toward positioning CHK2 in cancer pathophysiology. CHK2 variants exhibited higher propensity for this conformational change, also displaying higher expression in thyroid tumors. The present findings support the utility of complementary biophysical and in silico approaches toward understanding the impact of genetic variants in protein structure and function, improving the current knowledge on CHEK2 variants' role in FNMTC genetic basis, with prospective clinical translation.


Asunto(s)
Quinasa de Punto de Control 2 , Síndromes Neoplásicos Hereditarios , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Quinasa de Punto de Control 2/química , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndromes Neoplásicos Hereditarios/genética , Estudios Prospectivos , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Dominios Proteicos , Masculino , Femenino , Persona de Mediana Edad
2.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209204

RESUMEN

In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.


Asunto(s)
Cisteína/metabolismo , Riñón/metabolismo , Medicina de Precisión , Encéfalo/metabolismo , Humanos , Hígado/metabolismo , Especificidad de Órganos
3.
Br J Cancer ; 124(5): 862-879, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33223534

RESUMEN

To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.


Asunto(s)
Cisteína/metabolismo , Epigénesis Genética , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Neoplasias/patología , Animales , Metabolismo Energético , Glucólisis , Humanos , Redes y Vías Metabólicas , Neoplasias/genética , Neoplasias/metabolismo
4.
Adv Exp Med Biol ; 1306: 109-120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959909

RESUMEN

Our general goal was to non-invasively evaluate kidney tubular dysfunction. We developed a strategy based on cysteine (Cys) disulfide stress mechanism that underlies kidney dysfunction. There is scarce information regarding the fate of Cys-disulfides (CysSSX), but evidence shows they might be detoxified in proximal tubular cells by the action of N-acetyltransferase 8 (NAT8). This enzyme promotes the addition of an N-acetyl moiety to cysteine-S-conjugates, forming mercapturates that are eliminated in urine. Therefore, we developed a strategy to quantify mercapturates of CysSSX in urine as surrogate of disulfide stress and NAT8 activity in kidney tubular cells. We use a reduction agent for the selective reduction of disulfide bonds. The obtained N-acetylcysteine moiety of the mercapturates from cysteine disulfides was monitored by fluorescence detection. The method was applied to urine from mice and rat as well as individuals with healthy kidney and kidney disease.


Asunto(s)
Cisteína , Enfermedades Renales , Acetilcisteína , Animales , Disulfuros , Riñón , Ratones , Ratas
5.
Adv Exp Med Biol ; 1219: 335-353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130707

RESUMEN

Hydrogen sulfide (H2S), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third 'gasotransmitter' in mammalian physiology. H2S is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule. Indeed, imbalances in H2S levels associated with dysfunctional H2S metabolism have been growingly correlated with various human pathologies, from cardiovascular and neurodegenerative diseases to cancer. Several cancer cell lines and specimens have been shown to naturally overexpress one or more of the H2S-synthesizing enzymes. The resulting increased H2S levels have been proposed to promote cancer development through the regulation of various cancer-related processes, which led to the interest in pharmacological targeting of H2S metabolism. Herein are summarized some of the key observations that place H2S metabolism and signaling pathways at the forefront of the cellular mechanisms that support the establishment and development of a tumor within its complex and challenging microenvironment. Special emphasis is given to the mechanisms whereby H2S helps shaping cancer cell bioenergetic metabolism and affords resistance and adaptive mechanisms to hypoxia.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral , Animales , Humanos , Neoplasias/enzimología
6.
Molecules ; 25(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882966

RESUMEN

Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.


Asunto(s)
Neoplasias/enzimología , Neoplasias/metabolismo , Sulfurtransferasas/metabolismo , Transaminasas/metabolismo , Animales , Humanos , Redes y Vías Metabólicas , Terapia Molecular Dirigida , Transaminasas/química
7.
J Biol Chem ; 291(2): 572-81, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26582199

RESUMEN

Cystathionine ß-synthase (CBS) is a key enzyme in human (patho)physiology with a central role in hydrogen sulfide metabolism. The enzyme is composed of a pyridoxal 5'-phosphate-binding catalytic domain, flanked by the following two domains: a heme-binding N-terminal domain and a regulatory C-terminal domain binding S-adenosyl-l-methionine (AdoMet). CO or NO(•) binding at the ferrous heme negatively modulates the enzyme activity. Conversely, AdoMet binding stimulates CBS activity. Here, we provide experimental evidence for a functional communication between the two domains. We report that AdoMet binding significantly enhances CBS inhibition by CO. Consistently, we observed increased affinity (∼5-fold) and faster association (∼10-fold) of CO to the ferrous heme at physiological AdoMet concentrations. NO(•) binding to reduced CBS was also enhanced by AdoMet, although to a lesser extent (∼2-fold higher affinity) as compared with CO. Importantly, CO and NO(•) binding was unchanged by AdoMet in a truncated form of CBS lacking the C-terminal regulatory domain. These unprecedented observations demonstrate that CBS activation by AdoMet puzzlingly sensitizes the enzyme toward inhibition by exogenous ligands, like CO and NO(•). This further supports the notion that CBS regulation is a complex process, involving the concerted action of multiple physiologically relevant effectors.


Asunto(s)
Monóxido de Carbono/metabolismo , Cistationina betasintasa/metabolismo , Óxido Nítrico/metabolismo , S-Adenosilmetionina/farmacología , Hemo/metabolismo , Humanos , Cinética , Metionina/metabolismo , Oxidación-Reducción
8.
Biochim Biophys Acta ; 1857(8): 1127-1138, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27039165

RESUMEN

Merely considered as a toxic gas in the past, hydrogen sulfide (H2S) is currently viewed as the third 'gasotransmitter' in addition to nitric oxide (NO) and carbon monoxide (CO), playing a key signalling role in human (patho)physiology. H2S can either act as a substrate or, similarly to CO and NO, an inhibitor of mitochondrial respiration, in the latter case by targeting cytochrome c oxidase (CcOX). The impact of H(2)S on mitochondrial energy metabolism crucially depends on the bioavailability of this gaseous molecule and its interplay with the other two gasotransmitters. The H(2)S-producing human enzyme cystathionine ß-synthase (CBS), sustaining cellular bioenergetics in colorectal cancer cells, plays a role in the interplay between gasotransmitters. The enzyme was indeed recently shown to be negatively modulated by physiological concentrations of CO and NO, particularly in the presence of its allosteric activator S-adenosyl-l-methionine (AdoMet). These newly discovered regulatory mechanisms are herein reviewed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Neoplasias del Colon/metabolismo , Cistationina betasintasa/metabolismo , Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Monóxido de Carbono/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Cistationina betasintasa/química , Cistationina betasintasa/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Expresión Génica , Glutatión/metabolismo , Humanos , Cinética , Mitocondrias/patología , Modelos Moleculares , Óxido Nítrico/metabolismo , Fosforilación Oxidativa , S-Adenosilmetionina/metabolismo , Transducción de Señal
9.
Hum Mol Genet ; 24(25): 7339-48, 2015 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-26464485

RESUMEN

The key regulatory point of L-methionine (Met) and L-homocysteine (Hcy) degradation is catalyzed by cystathionine beta-synthase (CBS). CBS deficiency is caused by mutations in CBS gene, often resulting in protein misfolding. The prevalence of CBS deficiency in Qatar is 1/1800, ∼200-fold higher than the worldwide prevalence of 1/344 000. Almost all patients bear the CBS p.R336C variant. More than 20 years ago, it was shown in vitro that two unrelated protein variants with a substitution of an arginine (Arg) residue by cysteine (Cys) could be rescued by cysteamine (mercaptoethylamine), likely via formation of a disulfide between Cys and cysteamine, functionally mimicking the wild-type (WT) Arg side-chain. Based on these findings, we aimed to study whether cysteamine was able to improve the function of p.R336C CBS variant. Additionally, we tested the effect of mercaptoethylguanidine (MEG), a compound with a guanidino and a thiol function that may resemble Arg structure better than cysteamine. Three purified recombinant CBS proteins (p.R336C, p.R336H and WT) were pre-incubated with cysteamine, MEG or Cys (as negative control), and CBS activity and stability were measured. Pre-incubation with cysteamine and MEG increased the enzymatic activity of the p.R336C protein, which was absent upon pre-incubation with Cys. The WT and the p.R336H variant enzyme activity presented no increase with any of the tested compounds. Our results show that cysteamine and MEG are able to specifically improve the function of the CBS p.R336C variant, suggesting that any Arg-to-Cys substitution accessible to these small molecules may be converted back to a moiety resembling Arg.


Asunto(s)
Cistationina betasintasa/química , Cistationina betasintasa/metabolismo , Arginina/genética , Arginina/metabolismo , Western Blotting , Cistationina betasintasa/genética , Cisteína/genética , Cisteína/metabolismo , Fluorometría , Humanos , Estructura Secundaria de Proteína
10.
J Inherit Metab Dis ; 40(3): 325-342, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28281081

RESUMEN

Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.


Asunto(s)
Galactosemias/enzimología , Galactosemias/metabolismo , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/metabolismo , Animales , Galactosa/metabolismo , Humanos
11.
J Biol Inorg Chem ; 21(1): 39-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26767750

RESUMEN

Flavodiiron proteins have emerged in the last two decades as a newly discovered family of oxygen and/or nitric oxide reductases widespread in the three life domains, and present in both aerobic and anaerobic organisms. Herein we present the main features of these fascinating enzymes, with a particular emphasis on the metal sites, as more appropriate for this special issue in memory of the exceptional bioinorganic scientist R. J. P. Williams who pioneered the notion of (metal) element availability-driven evolution. We also compare the flavodiiron proteins with the other oxygen and nitric oxide reductases known until now, highlighting how throughout evolution Nature arrived at different solutions for similar functions, in some cases adding extra features, such as energy conservation. These enzymes are an example of the (bioinorganic) unpredictable diversity of the living world.


Asunto(s)
Hierro/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas/metabolismo
12.
J Biol Chem ; 289(12): 8579-87, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24515102

RESUMEN

The hexa-coordinate heme in the H2S-generating human enzyme cystathionine ß-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO(•) or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO(•) was reported to bind at the CBS heme with very low affinity (Kd = 30-281 µm). This discrepancy was herein reconciled by investigating the NO(•) reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO(•) binds tightly to the ferrous CBS heme, with an apparent Kd ≤ 0.23 µm. In line with this result, at 25 °C, NO(•) binds quickly to CBS (k on ∼ 8 × 10(3) m(-1) s(-1)) and dissociates slowly from the enzyme (k off ∼ 0.003 s(-1)). The observed rate constants for NO(•) binding were found to be linearly dependent on [NO(•)] up to ∼ 800 µm NO(•), and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO(•) quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO(•). The novel findings reported here shed new light on CBS regulation by NO(•) and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO(•), CO, and H2S in cell signaling.


Asunto(s)
Cistationina betasintasa/metabolismo , Óxido Nítrico/metabolismo , Monóxido de Carbono/metabolismo , Cistationina betasintasa/química , Hemo/química , Hemo/metabolismo , Humanos , Cinética , Oxidación-Reducción , Unión Proteica
13.
J Biol Chem ; 289(41): 28260-70, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25151360

RESUMEN

Flavodiiron proteins (FDPs) are a family of enzymes endowed with bona fide oxygen- and/or nitric-oxide reductase activity, although their substrate specificity determinants remain elusive. After a comprehensive comparison of available three-dimensional structures, particularly of FDPs with a clear preference toward either O2 or NO, two main differences were identified near the diiron active site, which led to the construction of site-directed mutants of Tyr(271) and Lys(53) in the oxygen reducing Entamoeba histolytica EhFdp1. The biochemical and biophysical properties of these mutants were studied by UV-visible and electron paramagnetic resonance (EPR) spectroscopies coupled to potentiometry. Their reactivity with O2 and NO was analyzed by stopped-flow absorption spectroscopy and amperometric methods. These mutations, whereas keeping the overall properties of the redox cofactors, resulted in increased NO reductase activity and faster inactivation of the enzyme in the reaction with O2, pointing to a role of the mutated residues in substrate selectivity.


Asunto(s)
Proteínas Bacterianas/química , Entamoeba histolytica/química , Hierro/química , Lisina/química , Oxidorreductasas/química , Tirosina/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Entamoeba histolytica/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hierro/metabolismo , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tirosina/genética , Tirosina/metabolismo
14.
Hum Mutat ; 35(10): 1195-202, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044645

RESUMEN

Cystathionine beta-synthase (CBS) catalyzes the formation of cystathionine from homocysteine and serine. CBS is allosterically activated by S-adenosylmethionine (SAM), which binds to its C-terminal regulatory domain. Mutations in this domain lead to variants with high residual activity but lacking SAM activation. We characterized six C-terminal CBS variants (p.P427L, p.D444N, p.V449G, p.S500L, p.K523Sfs*18, and p.L540Q). To understand the effect of C-terminal mutations on the functional/structural properties of CBS, we performed dynamic light scattering, differential scanning fluorimetry, limited proteolysis, enzymatic characterization, and determination of SAM-binding affinity. Kinetic data confirm that the enzymatic function of these variants is not impaired. Although lacking SAM activation, the p.P427L and p.S500L were able to bind SAM at a lower extent than the wild type (WT), confirming that SAM binding and activation can be two independent events. At the structural level, the C-terminal variants presented various effects, either showing catalytic core instability and increased susceptibility toward aggregation or presenting with similar or higher stability than the WT. Our study highlights as the common feature to the C-terminal variants an impaired binding of SAM and no increase in enzymatic activity with physiological concentrations of the activator, suggesting the loss of regulation by SAM as a potential pathogenic mechanism.


Asunto(s)
Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Homocistinuria/enzimología , Mutación , Sitio Alostérico , Secuencia de Aminoácidos , Dominio Catalítico , Cistationina betasintasa/química , Homocistinuria/genética , Humanos , Cinética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo
15.
J Inherit Metab Dis ; 37(1): 43-52, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23749220

RESUMEN

Classic galactosemia is an autosomal recessive disorder caused by deficient galactose-1-phosphate uridylyltransferase (GALT) activity. Patients develop symptoms in the neonatal period, which can be ameliorated by dietary restriction of galactose. Many patients develop long-term complications, with a broad range of clinical symptoms whose pathophysiology is poorly understood. The high allelic heterogeneity of GALT gene that characterizes this disorder is thought to play a determinant role in biochemical and clinical phenotypes. We aimed to characterize the mutational spectrum of GALT deficiency in Portugal and to assess potential genotype-phenotype correlations. Direct sequencing of the GALT gene and in silico analyses were employed to evaluate the impact of uncharacterized mutations upon GALT functionality. Molecular characterization of 42 galactosemic Portuguese patients revealed a mutational spectrum comprising 14 nucleotide substitutions: ten missense, two nonsense and two putative splicing mutations. Sixteen different genotypic combinations were detected, half of the patients being p.Q188R homozygotes. Notably, the second most frequent variation is a splicing mutation. In silico predictions complemented by a close-up on the mutations in the protein structure suggest that uncharacterized missense mutations have cumulative point effects on protein stability, oligomeric state, or substrate binding. One splicing mutation is predicted to cause an alternative splicing event. This study reinforces the difficulty in establishing a genotype-phenotype correlation in classic galactosemia, a monogenic disease whose complex pathogenesis and clinical features emphasize the need to expand the knowledge on this "cloudy" disorder.


Asunto(s)
Galactosemias/genética , Mutación Missense , Empalme del ARN , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Adolescente , Adulto , Alelos , Análisis Mutacional de ADN , Femenino , Galactosa/sangre , Galactosafosfatos/sangre , Frecuencia de los Genes , Estudios de Asociación Genética , Homocigoto , Humanos , Masculino , Fenotipo , Portugal , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , Adulto Joven
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166983, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38070581

RESUMEN

Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Cisteína , Proliferación Celular , Proteínas que Contienen Bromodominio , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Eukaryot Cell ; 11(9): 1112-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22798391

RESUMEN

We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.


Asunto(s)
Entamoeba histolytica/enzimología , Oxidorreductasas/genética , Proteínas Protozoarias/genética , Entamoeba histolytica/genética , Regulación Enzimológica de la Expresión Génica , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas Protozoarias/metabolismo
18.
Eur J Pharm Biopharm ; 187: 1-11, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011788

RESUMEN

The structural maintenance of therapeutic proteins during formulation and/or storage is a critical aspect, particularly for multi-domain and/or multimeric proteins which usually exhibit intrinsic structural dynamics leading to aggregation with concomitant loss-of-function. Protein freeze-drying is a widely used technique to preserve protein structure and function during storage. To minimize chemical/physical stresses occurring during this process, protein stabilizers are usually included, their effect being strongly dependent on the target protein. Therefore, they should be screened for on a time-consuming case-by-case basis. Herein, differential scanning fluorimetry (DSF) and isothermal denaturation fluorimetry (ITDF) were employed to screen, among different classes of freeze-drying additives, for the most effective stabilizer of the model protein human phenylalanine hydroxylase (hPAH). Correlation studies among retrieved DSF and ITDF parameters with recovered enzyme amount and activity indicated ITDF as the most appropriate screening method. Biochemical and biophysical characterization of hPAH freeze-dried with ITDF-selected stabilizers and a long-term storage study (12 months, 5 ± 3 °C) showed that the selected compounds prevented protein aggregation and preserved hPAH structural and functional properties throughout time storage. Our results provide a solid basis towards the choice of ITDF as a high-throughput screening step for the identification of protein freeze-drying protectors.


Asunto(s)
Fenilalanina Hidroxilasa , Humanos , Proteínas/química , Liofilización/métodos , Fluorometría , Excipientes/química , Desnaturalización Proteica
19.
Sci Rep ; 13(1): 21684, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38066107

RESUMEN

Glycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described. In this paper, we have produced and purified recombinant secretory GLT8D1. The enzyme was found to be N-glycosylated. Differential scanning fluorimetry was employed to analyze the stabilization of GLT8D1 by Mn2+ and nucleotides, revealing UDP as the most stabilizing nucleotide scaffold. GLT8D1 displayed glycosyltransferase activity from UDP-galactose onto N-acetylgalactosamine but with a low efficiency. Modeling of the structure revealed similarities with other GT-A fold enzymes in CAZy family GT8 and glycosyltransferases in other families with galactosyl-, glucosyl-, and xylosyltransferase activities, each with retaining catalytic mechanisms. Our study provides novel structural and functional insights into the properties of GLT8D1 with implications in pathological processes.


Asunto(s)
Galactosiltransferasas , Glicosiltransferasas , Humanos , Galactosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Catálisis , Uridina Difosfato
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166766, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37257730

RESUMEN

Medium chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is associated with ACADM gene mutations, leading to an impaired function and/or structure of MCAD. Importantly, after import into the mitochondria, MCAD must incorporate a molecule of flavin adenine dinucleotide (FAD) per subunit and assemble into tetramers. However, the effect of MCAD amino acid substitutions on FAD incorporation has not been investigated. Herein, the commonest MCAD variant (p.K304E) and 11 additional rare variants (p.Y48C, p.R55G, p.A88P, p.Y133C, p.A140T, p.D143V, p.G224R, p.L238F, p.V264I, p.Y372N, and p.G377V) were functionally and structurally characterized. Half of the studied variants presented a FAD content <65 % compared to the wild-type. Most of them were recovered as tetramers, except the p.Y372N (mainly as dimers). No correlation was found between the levels of tetramers and FAD content. However, a correlation between FAD content and the cofactor's affinity, proteolytic stability, thermostability, and thermal inactivation was established. We showed that the studied amino acid changes in MCAD may alter the substrate chain-length dependence and the interaction with electron-transferring-flavoprotein (ETF) necessary for a proper functioning electron transfer thus adding additional layers of complexity to the pathological effect of ACADM missense mutations. Although the majority of the variant MCADs presented an impaired capacity to retain FAD during their synthesis, some of them were structurally rescued by cofactor supplementation, suggesting that in the mitochondrial environment the levels and activity of those variants may be dependent of FAD's availability thus contributing for the heterogeneity of the MCADD phenotype found in patients presenting the same genotype.


Asunto(s)
Flavina-Adenina Dinucleótido , Mutación Missense , Humanos , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA