Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38100865

RESUMEN

Phosphorus (P) is an essential element for life that must be managed sustainably. The institutional framework for P recovery from wastewater includes policies, regulations, plans, and actions that promote the recovery, recycling, and safe use of this element, aimed at moving toward more sustainable nutrient management and environmental protection. This review analyzes the status of the institutional framework for P recovery from wastewater in different countries around the world. Europe is the continent where the most progress has been made in terms of legislation. Countries such as Germany, the Netherlands, Austria, and Denmark have already implemented policies and regulations that promote environmental protection, as well as P recovery and reuse. In other parts of the world, such as the United States, China, and Japan, there have also been significant advances in promoting the closure of the P cycle, with the implementation of advanced recovery technologies in wastewater treatment plants and regional/national action plans. By contrast, in Latin America there has been little progress in P treatment and recovery, with a weak regulatory framework, unclear goals, and insufficient allocation of techno-economic resources. In this context, it is necessary to reinforce the comprehensive institutional framework, which covers technological aspects, economic incentives, political agreements, and regulations, to promote the sustainable management of this valuable resource.


Asunto(s)
Fósforo , Aguas Residuales , Conservación de los Recursos Naturales , Políticas , Reciclaje , Eliminación de Residuos Líquidos
2.
Int J Phytoremediation ; 24(6): 610-621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34382468

RESUMEN

The aim of this study was to evaluate long-term phosphorus (P) retention in a pilot-scale system made of four horizontal subsurface flow (HSSF) constructed wetlands for wastewater treatment. Each wetland had an area of 4.5 m2 and was operated for nearly 8 years (2833 days). Two wetlands with Schoenoplectus californicus (HSSF-Sch) and the other two with Phragmites australis (HSSF-Phr) were planted. The P removal efficiency was 18% for both types of HSSF wetlands. The primary factors that correlated with long-term P retention efficiency in HSSF were phosphorus loading rate (PLR), hydraulic loading rate (HLR) and dissolved oxygen (DO). Average biomass production of HSSF-Phr and HSSF-Sch was 4.8 and 12.1 kg dry weight (DW)/m2, respectively. The P uptake by the plant increased over the years of operation from 1.8 gP/m2 to 7.1 gP/m2 for Phragmites and from 3.2 to 7.4 gP/m2 for Schoenoplectus over the same periods. Moreover, the warm season (S/Sm) was more efficient reaching 14% P uptake than the cold season (F/W) with 9%. These results suggest that both plants' P retention capacity in HSSF systems represents a sustainable treatment in the long term.Novelty statement Long-term (8 years) phosphorus uptake by Schoenoplectus californicus and Phragmites australis and retention in pilot-scale constructed wetlands are evaluated. Schoenoplectus californicus is an uncommon species that has been less studied for phosphorus uptake compared to Phragmites australis, a globally known species in constructed wetlands. Moreover, some studies evaluating the performance of constructed wetland systems for domestic wastewater treatment are usually limited in time (1-3 years). Therefore, this long-term study demonstrates that the plant plays an important role in phosphorus retention, especially the species Schoenoplectus californicus. So, the phosphorus uptake by plants can contribute between 9 and 14% of the phosphorus load of constructed wetland systems in early years of operation.


Asunto(s)
Purificación del Agua , Humedales , Biodegradación Ambiental , Fósforo , Plantas , Poaceae , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
3.
J Environ Manage ; 324: 116357, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202036

RESUMEN

Reducing the costs and environmental impacts of sludge management is currently one of the main challenges faced by the wastewater treatment sector. Anaerobic digestion followed by land application has been widely endorsed as a low-impact approach to sludge management, mainly due to the recovery of biogas and the valorization of digestate. However, the influence that the operational conditions of digestion and the management practices of land application can have over the environmental performance of this strategy has been scarcely studied. Furthermore, most of the previous studies dealing with the environmental assessment of this strategy use simplified methods for estimating emissions after land application of sludge, and the lack of systematic accounting of these environmental flows might significantly affect the validity and comparability of the results. Therefore, this work performed an assessment of the influence that 4 relevant practices can have over the environmental impacts of this approach in the context of south-central Chile, providing a mass-balanced inventory for nitrogen, phosphorus and heavy metals in soil based on the ad hoc implementation of models developed for agricultural Life Cycle Assessment (LCA). A total of 16 scenarios were defined and 10 impact categories were evaluated, with the results showing that the environmental impacts were greatly influenced by the variables under study. Overall, solids retention time and the inclusion of pre-treatment mainly influenced climate change, fossil resource depletion and terrestrial ecotoxicity potential, while sludge application rate influenced the eutrophication, water ecotoxicity and human toxicity categories. The type of crop in the receiving soil was a significant driver behind the differences observed in the human toxicity category, which showed the highest variation and relevance in the final weighted result. The results clearly highlight the relevance of using context specific data as well as of quantifying the fate of nutrients, metals and heavy metals during LCA of sludge management. Based on the results, some policy and decision-making recommendations are formulated to optimize the environmental performance of sludge digestion and land application.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Humanos , Chile , Eutrofización , Suelo
4.
J Environ Manage ; 324: 116320, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183529

RESUMEN

Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Giardiasis , Purificación del Agua , Animales , Giardia , Aguas del Alcantarillado/parasitología , Agua , Oocistos , Giardiasis/epidemiología , Purificación del Agua/métodos
5.
Artículo en Inglés | MEDLINE | ID: mdl-31698987

RESUMEN

The objective of this research was to evaluate the distribution of the molecular weights of the recalcitrant organic matter contained in kraft mill effluents and identify microbial consortia responsible for an anaerobic biodegradable fraction. As a result, the average removal efficiencies of chemical organic demand (COD) and biological oxygen demand (BOD5) during the entire period of operation were 28% and 53%, respectively. The non-biodegradable organic matter was detected at molecular weights less than 1000 Da. However, most of the organic matter was in the molecular weight fraction higher than 10000 Da with 32 ± 11.6% COD as well as color (42.3 ± 8.7%), total phenolic compounds (35.9 ± 7.9%) and adsorbable organic compounds (AOX) (13.0 ± 2.7%). Methanogenic acetoclastic archaea of the genera Methanomethylovorans and Methanosarcina were found in the surface and middle zones of the reactor. Moreover, Methanosaeta and Methanolinea were identified in the low zone of the reactor. In all zones of the reactor, Desulfomicrobium and Desulfovibrio were found to be the most dominant genera of sulfate-reducing bacteria (SRB).


Asunto(s)
Residuos Industriales/análisis , Consorcios Microbianos , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Papel , Anaerobiosis , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Consorcios Microbianos/genética , Peso Molecular , Eliminación de Residuos Líquidos
6.
Water Sci Technol ; 80(10): 1870-1879, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32144219

RESUMEN

The use of constructed wetlands as a wastewater treatment system is a feasible solution for rural areas. However, these systems do not efficiently eliminate pathogenic microorganisms. Therefore, it is necessary to implement disinfection systems such as ultraviolet (UV) disinfection systems in constructed wetlands. To evaluate the behavior of a UV system, a pilot system of artificial wetlands connected to one such disinfection system was operated. The results show that when the total suspended solids (TSS) of the influent (already treated by the system of constructed wetlands) reached values of 26.7 mg/L, a reduction of 2.03 uLog in fecal coliforms was obtained. However, when the TSS increased to 34.7 mg/L, the reduction was only 0.33 uLog. In addition to the influence of the TSS on the fecal coliform reduction efficiency, there is a direct relationship between the transmittance and the sizes of the particles present in the influent. After UV treatment, the microorganisms showed a peak in photoreactivation of 27.8% at 4 h after irradiation with visible radiation, while under conditions of darkness, no reactivation was observed.


Asunto(s)
Desinfección , Aguas Residuales , Luz , Rayos Ultravioleta , Eliminación de Residuos Líquidos , Humedales
7.
Water Sci Technol ; 79(4): 656-667, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30975932

RESUMEN

The aim of this study was to evaluate the phytotoxicity of wastewater treated with horizontal subsurface flow (HSSF) constructed wetlands (CWs) and activated sludge (AS) system using disinfection treatment such chlorination and ultraviolet (UV) system. To assess the impact of the reuse of different effluents (HSSF-Cl, HSSF-UV, AS-Cl and AS-UV), bioassays using seeds of Raphanus sativus (R. sativus) and Triticum aestivum (T. aestivum), were performed on both Petri dishes and soil. Different treated wastewater concentrations were varied (6.25%, 12.5%, 25%, 50% and 100%) and the percentage of germination inhibition (PGI), percentage of epicotyl elongation (PEE) and germination index (GI) were determined. Positive effects (PGI and PEE <0% and GI >80%) of HSSF-Cl, HSSF-UV, AS-Cl and AS-UV effluents on germination and epicotyl elongation of R. sativus and T. aestivum were observed in Petri dishes bioassays. However, toxic effects of HSSF-Cl, HSSF-UV and AS-Cl on seeds germination and epicotyl elongation of both plant species were detected in soil samples (PGI and PEE >0% and GI <80%). Only R. sativus seeds to be irrigated with AS-UV achieved GI values above 86% for all concentrations evaluated. These results indicated that AS-UV effluent had a positive effect on seeds germination and can be recommended for treated wastewater reuse in agricultural irrigation.


Asunto(s)
Plantas/efectos de los fármacos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Contaminantes del Agua/toxicidad , Humedales , Semillas , Aguas del Alcantarillado , Suelo
8.
Int J Phytoremediation ; 20(6): 530-537, 2018 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-29688050

RESUMEN

The aim of this study is to evaluate the influence of Agapanthus africanus (A. africanus) on nitrification in a vertical subsurface flow constructed wetlands (VSSFs) system. Two lab-scale VSSFs were operated: a) one was planted with A. africanus (vertical flow planted, VFP), and b) the other was unplanted (vertical flow control, VFC). The operation strategy was divided into three phases and consisted of increasing the ammoniacal nitrogen loading rate (ALR) (Phase I: 1.4; Phase II: 2.4; Phase III: 4.4 g NH4+-N·m-2·d-1). Nitrification was evaluated in the system at two different depths in the VSSFs (30.5 cm and 60.3 cm, from the top of the system). The removal efficiencies of COD, BOD5, TP, and PO4-3-P were above 40% in the VFP and VFC during all operation. The mean removal efficiencies of NH4+-N were above 70%. Nitrification was the principal NH4+-N removal mechanism in both systems and transformed more than 50% of the NH4+-N to NO3--N. In terms of the effect of A. africanus on NH4+-N removal during the three operational phases, nonsignificant differences between the two VSSFs were noted (p > 0.05). Thus, A. africanus did not influence nitrification. Finally, the analysis at different depths showed that nitrification occurred in the upper 30.5 cm.


Asunto(s)
Nitrificación , Humedales , Biodegradación Ambiental , Nitrógeno , Plantas , Eliminación de Residuos Líquidos
10.
Artículo en Inglés | MEDLINE | ID: mdl-27399163

RESUMEN

Stigmasterol is a phytosterol contained in Kraft mill effluent that is able to increase over 100% after aerobic biological treatment. This compound can act as an endocrine disrupter as its structure is similar to that of cholesterol. The aim of this study was to evaluate the removal of stigmasterol from Kraft mill effluents treated by a moving bed biofilm reactor (MBBR) with steroidal metabolite detection. The MBBR was operated for 145 days, with a hydraulic retention time of 2 days. Stigmasterol and steroidal metabolites were detected by gas chromatography with a flame ionization detector during MBBR operation. The results show that the MBBR removed 87.4% of biological oxygen demand (BOD5), 61.5% of chemical oxygen demand (COD), 24.5% of phenol and 31.5% of lignin, expressed in average values. The MBBR system successfully removed 100% of the stigmasterol contained in the influent (33 µg L(-1)) after 5 weeks of operation. In that case, the organic load rate was 0.343 kg COD m(-3) d(-1). Furthermore, different steroidal compounds (e.g., testosterone propionate, stigmast-4-en-3-one, 5α-pregnan-12-one-20α-hydroxy, 5α-pregnane-3,11,20-trione and 3α-hydroxy-5α-androstane-11,17-dione were detected in the Kraft mill effluent as potential products of phytosterol biotransformation.


Asunto(s)
Bacterias Aerobias/química , Biodegradación Ambiental , Lignina/análisis , Lignina/química , Estigmasterol/análisis , Estigmasterol/química , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Chile , Disruptores Endocrinos/análisis , Residuos Industriales/análisis , Papel , Pinus , Esteroides/análisis , Esteroides/química
11.
Bull Environ Contam Toxicol ; 97(6): 843-847, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27704189

RESUMEN

The implementation of elemental chlorine-free (ECF) bleaching methods has drastically reduced the aquatic toxicity of Kraft mill effluents during the last decade. However, the residual toxicity of Kraft mill effluents is still a potential concern for the environment, even when subjected to secondary wastewater treatment. The aim of this study is characterize potential sublethal effects of ECF Kraft mill effluents using Daphnia magna as model species. D. magna exposed towards increasing concentration of ECF Kraft mill effluent showed a significant, dose-dependent reduction in feeding. Conversely, post-feeding assay, life history, and allometric growth analyses showed stimulatory, rather than inhibitory effects in exposed animals at low concentrations, while high concentrations of ECF Kraft mill effluents reduced their reproductive output. These results suggest a hormetic effect in which moderate concentrations of the effluent had a stimulatory effect with higher concentrations causing inhibition in some variables.


Asunto(s)
Daphnia/efectos de los fármacos , Daphnia/crecimiento & desarrollo , Conducta Alimentaria/efectos de los fármacos , Aguas Residuales/toxicidad , Animales , Bioensayo , Relación Dosis-Respuesta a Droga
12.
Artículo en Inglés | MEDLINE | ID: mdl-25837566

RESUMEN

Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.


Asunto(s)
Residuos Industriales , Papel , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Chile
13.
Artículo en Inglés | MEDLINE | ID: mdl-26252764

RESUMEN

The aim of this study was to evaluate the effects of variations in the nitrogen loading rate (NLR) and seasonality on the operational efficiency of a free-water surface constructed wetland (FWS) and on the processes involved in total nitrogen (TN) removal in treating swine wastewater. The system, which operated for 550 days, consisted of a FWS mesocosm inoculated with Typha angustifolia L., using swine wastewater from a storage lagoon as an influent. After operating with nitrogen loading rates (NLRs) of 2.0 to 30.2 kg TN ha(-1)·d(-1), the FWS reduced total nitrogen (TN) concentration by between 21.6 and 51.0%, achieving maximum removal (48.2 ± 3.0%) when the system operated at a NLR below 15.0 kg TN ha(-1)·d(-1). Moreover, operations over 25.0 kg TN ha(-1)·d(-1) resulted in a 50.6% decrease in the maximum FWS efficiency, which may have been related to increased anoxic conditions (< 0.5 mg O2 L(-1); -169.8 ± 70.3 mV) resulting from the high concentration of organic matter in the system (12.3 ± 10.5 g TCOD L(-1)), which hindered nitrification. Ammonia volatilization is considered the main method to remove TN, with an average value of 14.4 ± 6.5% (3.1-26.2%). Maximum volatilization occurred during the summer (21.5 ± 2.4°C) at an NLR higher than 25 kg TN ha(-1)·d(-1) (26.6%), favored by higher temperatures (17.3-19.7°C), and high NH4(+)-N (>600.0 9 mg NH4(+)-N L(-1)) and pH levels (7.1-7.9). Uptake by plants accounted for 14.9% of the TN removed, with the vegetative peak in summer (height: 105.3 cm; diameter: 2.1 cm) at an NLR of 25.3 ± 0.3 kg TN ha(-1)·d(-1). However, growth decreased to 94.4% at an NLR of over 25.3 ± 0.3 kg TN ha(-1)·d(-1) (>379.9 mg NH4(+)-N L(-1)) in autumn (17.4 ± 2.4°C). This was associated with the period of plant senescence and the effects of ammonium phytotoxicity (379.9-624.2 mg NH4(+)-N L(-1)) and continued to the end of the study with the complete loss of macrophyte species. Finally, 1.5% of the TN removed was incorporated into the sediments where NH4(+)-N is the main form of nitrogen, with an accumulative value of 2.6 g m(-2).


Asunto(s)
Sedimentos Geológicos/química , Nitrógeno/química , Estaciones del Año , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Amoníaco/química , Animales , Porcinos , Typhaceae/metabolismo , Eliminación de Residuos Líquidos , Agua/química , Purificación del Agua , Humedales
14.
Artículo en Inglés | MEDLINE | ID: mdl-25438132

RESUMEN

Nitrogen and phosphorus distribution in a constructed wetland fed with treated swine slurry from an anaerobic lagoon were studied. The methodology considered a daily meteorological monitoring site. During 2011 to 2012, water, soil and plants (Schoenoplectus californicus (C.A. Méyer) Sójak, Typha angustifolia (L.)) were seasonally sampled (spring and fall) into the constructed wetland. During study period, results showed that rainfall was the main factor of maintenance hydraulic conditions, while evapotranspiration was driver of variations in water storage level. Nitrogen and phosphorus removal from the water phase were up to 54% and 37%, respectively. Onto soil were adsorbed over 70% nitrogen and 65% phosphorus. Phosphorus was less mobile than nitrogen, since it was bound to oxides Fe-Mn. Inorganic nitrogen species were affected by level water and seasonal vegetable maturation. During spring, N-NH4(+) was the predominant soil species, while in the fall, N-NO3(-) was dominant near the belowground part of Sc and NH4(+) near to the belowground zone of Ta. In addition, nutrients uptake was less than 30% with 64% aboveground-spring and 85% belowground-fall for both plants. Findings showed nitrification process evidences when water levels are below 0.1 m.


Asunto(s)
Compuestos de Nitrógeno/análisis , Compuestos de Fósforo/análisis , Porcinos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Humedales , Anaerobiosis , Animales , Chile , Cyperaceae/crecimiento & desarrollo , Estiércol/microbiología , Compuestos de Nitrógeno/aislamiento & purificación , Compuestos de Fósforo/aislamiento & purificación , Estaciones del Año , Typhaceae/crecimiento & desarrollo , Contaminantes Químicos del Agua/aislamiento & purificación
15.
Artículo en Inglés | MEDLINE | ID: mdl-24171422

RESUMEN

The aim of this study was to evaluate the behavior of total nitrogen (TN) in its different forms in a Free Water Surface constructed wetland (FWS) used as posttreatment for anaerobically treated swine wastewater. The experiment was conducted in a glasshouse from July 2010 to November 2011. The system consists in a FWS mesocosm inoculated with Typha angustifolia L. using as pretreatment an UASB reactor (upflow anaerobic sludge blanket). The operation are based on the progressive increase of the nitrogen loading rate (NLR) (2.0-30.2 kg TN/ha·d) distributed in 12 loads, with an operational time of 20 d. The results indicate that the behavior of the TN in the FWS, mainly depends on the NLR applied, the amount of dissolved oxygen available and the seasonality. The FWS operated with an NLR between 2.0-30.2 kg TN/ha·d, presents average removal efficiency for TN of 54.8%, with a maximum removal (71.7%) between spring-summer seasons (17.3-21.7°C). The availability of dissolved oxygen hinders the nitrification/denitrification processes in the FWS representing a 0.3-5.6% of TN removed.The main route of TN removal is associated with ammonia volatilization processes (2.6-40.7%), mainly to NLR over 25.8 kg TN/ha· d and with temperatures higher than 18°C. In a smaller proportion, the incorporation of nitrogen via plant uptake was 10.8% whereas the TN accumulated in the sediments was a 5.0% of the TN applied during the entire operation (550 d). An appropriate control of the NLR applied, can reduce the ammonia volatilization processes and the phytotoxicity effects expressed as growth inhibition in 80.0% from 496.0 mg NH(+) 4-N/L (25.8 kg TN/ha·d).


Asunto(s)
Nitrógeno/química , Eliminación de Residuos Líquidos , Aguas Residuales , Purificación del Agua/métodos , Humedales , Anaerobiosis , Animales , Porcinos
16.
J Environ Sci Health B ; 49(11): 880-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25190563

RESUMEN

Anaerobic digestion does not efficiently reduce ionic compounds present in swine slurry, which could present a potential risk to aquatic ecosystems (surface runoff) and terrestrial ambient (irrigation). The objective of this study was to evaluate the ecotoxicological characteristics of anaerobically treated swine slurry using acute and chronic (epicotyl elongation) toxicity tests with Daphnia magna and Raphanus sativus and identification of suspected toxic compounds using the Toxicity Identification Evaluation (TIE) method. The evaluation was performed in three phases: physicochemical characterization of the slurry; acute/chronic toxicity testing with Daphnia magna and Raphanus sativus for each fraction of the TIE (cation and anion exchange columns, activated carbon, pH modification/aeration and EDTA) and identification of suspected toxic compounds. The anaerobically treated slurry contained concentrations of ammonium of 1,072 mg L(-1), chloride of 815 mg L(-1) and metals below 1 mg L(-1) with a D. magna acute toxicity (48h-LC50) of 5.3% and R. sativus acute toxicity (144h-LC50) of 48.1%. Epicotyl elongation of R. sativus was inhibited at concentrations above 25% (NOEC). The cation exchange reduced the toxicity and free ammonia by more than 90% for both bio-indicators. Moreover, this condition stimulated the epicotyl growth of R. sativus between 10% and 37%. In conclusion, the main compound suspected of causing acute toxicity in D. magna and acute/chronic toxicity in R. sativus is the ammonium. The findings suggest the need the ammonium treatment prior to the agricultural reuse of swine slurry given the high risk to contaminate the aquatic environment by runoff and toxicity of sensitive plants.


Asunto(s)
Daphnia/efectos de los fármacos , Raphanus/efectos de los fármacos , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/toxicidad , Anaerobiosis , Animales , Porcinos , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
17.
Plants (Basel) ; 13(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38256712

RESUMEN

Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil's bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. The Atacama Desert in Chile, the driest place on earth, harbors a largely unexplored microbial richness. This study aimed to evaluate the ability of various Bacillus sp. from the hyper arid Atacama Desert in the improvement in tolerance to drought stress in lettuce (Lactuca sativa L. var. capitata, cv. "Super Milanesa") plants. Seven strains of Bacillus spp. were isolated from the rhizosphere of the Chilean endemic plants Metharme lanata and Nolana jaffuelii, and then identified using the 16s rRNA gene. Indole acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were assessed. Lettuce plants were inoculated with Bacillus spp. strains and subjected to two different irrigation conditions (95% and 45% of field capacity) and their biomass, net photosynthesis, relative water content, photosynthetic pigments, nitrogen and phosphorus uptake, oxidative damage, proline production, and phenolic compounds were evaluated. The results indicated that plants inoculated with B. atrophaeus, B. ginsengihumi, and B. tequilensis demonstrated the highest growth under drought conditions compared to non-inoculated plants. Treatments increased biomass production and were strongly associated with enhanced N-uptake, water status, chlorophyll content, and photosynthetic activity. Our results show that specific Bacillus species from the Atacama Desert enhance drought stress tolerance in lettuce plants by promoting several beneficial plant traits that facilitate water absorption and nutrient uptake, which support the use of this unexplored and unexploited natural resource as potent bioinoculants to improve plant production under increasing drought conditions.

18.
Artículo en Inglés | MEDLINE | ID: mdl-23043335

RESUMEN

Aryl Hydrocarbon Receptor (AhR) ligands also known as dioxin-like compounds, constitute a substantial part of the total toxicity from many pollution sources, including pulp mill effluents. The aim of this article was to evaluate dioxin-like activity in different kraft mill effluents by a combination of yeast bioassays and gas chromatography-mass spectrometry (GC-MS) chemical analysis. The study includes kraft mill effluents from three sources of raw material: Pinus radiata, Eucalyptus globulus and a combination of both (50% each). The Recombinant Yeast Assay (RYA) showed an effective concentration of AhR ligands more than 30-fold higher in Eucalyptus globulus than in Pinus radiata effluents. Our results suggest that specific ligands, rather than the total amount of extractive material, determined the observed activity. Analysis of extract composition by GC-MS indicated that moderately hydrophobic aromatic compounds were likely responsible for the observed dioxin-like activity. In particular, benzaldehyde derivatives appeared as candidates for eliciting the observed dioxin-like activity in pulp mill effluents, giving their structural properties and their high concentration in AhR ligand-rich samples.


Asunto(s)
Bioensayo/métodos , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Aromáticos/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Eucalyptus , Hidrocarburos Aromáticos/análisis , Residuos Industriales/análisis , Ligandos , Pinus , Receptores de Hidrocarburo de Aril/análisis , Saccharomyces cerevisiae/metabolismo , Contaminantes Químicos del Agua/análisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-23647112

RESUMEN

The objective of this study was to evaluate the behavior of Typha angustifolia L. in nitrogen retention in a Free Water Surface Constructed Wetland (FWS) for the swine wastewater treatment over a three-year operating period. Results show that the behavior of Typha angustifolia L. in a FWS for treatment of swine wastewater is affected by nitrogen concentration, seasonal variation and plant establishment in the system. Indeed, the application of Nitrogen Loading Rates (NLR) between 7.1-14.3 kg TN/ha·d removes 40% of Total Nitrogen (TN), where the maximum removal (20-40%) takes place in the spring-summer seasons. However, concentrations higher than 120.3 mg NH4 (+)-N/L significantly decrease (P = 0.004) diametrical growth by 55%. However, it was possible to estimate that NLR >14.3 kg TN/ha·d increased biomass production and plant uptake in Typha angustifolia L. during the period analyzed. Additionally, aboveground biomass values were between 1.509.6-2.874.0 g/m(2) and nitrogen uptake 27.4-40.8 g/m(2), where this last value represents 29% of the TN applied during the study. Finally, the TN accumulation in sediments represents less than 2% of the TN incorporated during this period. These results show that an increase of 50% of the TN in sediments increases plant abundance in 73%, which is related to the mineralization processes favored in the system during the last year of operation.


Asunto(s)
Sedimentos Geológicos/análisis , Typhaceae/efectos de los fármacos , Typhaceae/crecimiento & desarrollo , Aguas Residuales/análisis , Contaminantes Químicos del Agua/toxicidad , Humedales , Animales , Nitrógeno/toxicidad , Estaciones del Año , Porcinos , Eliminación de Residuos Líquidos
20.
Waste Manag Res ; 31(8): 820-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23524995

RESUMEN

Differences in biodegradability can affect the treatment of slurry before its use in spraying. The objective of this study was to evaluate the effect of the generation and physical-chemical characterization of swine and dairy cattle slurries on different biological treatment technologies. This research involved monthly sampling (number/composition) for 1 year of 24 swine farms (16%), cattle farms (38%), and mixed swine and cattle farms (46%). The results obtained showed differences in feeding (3 l water kg(-1) food for cattle and 5 l water kg(-1) food for swine) and assimilation (0.6 kg food kg (-1) milk produced and 3 kg kg(-1) weight gain), which may influence the generation of slurry (57 l animal(-1)d(-1) in cattle and 31 l animal(-1) d(-1) in swine) and its composition. In addition, the composition of swine slurry [23 g chemical oxygen demand (COD) l(-1), 3 g total nitrogen (TN) l(-1)] is significantly different (P < 0.01) to cattle slurry (4 g COD l(-1), 0.3 g TN l(-1)). Finally, the composition and the S index applied to swine slurry [COD N(-1) = 8, biological oxygen demand (BOD)5 COD(-1) = 0.3, S index > 0] and cattle slurry (COD N(-1) = 16, BOD5 COD(-1) = 0.6, S index < 0) show a difference on the biodegradability of both slurries. Suitability of anaerobic and aerobic treatment was assessed based on the findings.


Asunto(s)
Estiércol , Animales , Análisis de la Demanda Biológica de Oxígeno , Bovinos , Nitrógeno/análisis , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA