Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(13): e202316133, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279624

RESUMEN

Biocatalytic oxidations are an emerging technology for selective C-H bond activation. While promising for a range of selective oxidations, practical use of enzymes catalyzing aerobic hydroxylation is presently limited by their substrate scope and stability under industrially relevant conditions. Here, we report the engineering and practical application of a non-heme iron and α-ketoglutarate-dependent dioxygenase for the direct stereo- and regio-selective hydroxylation of a non-native fluoroindanone en route to the oncology treatment belzutifan, replacing a five-step chemical synthesis with a direct enantioselective hydroxylation. Mechanistic studies indicated that formation of the desired product was limited by enzyme stability and product overoxidation, with these properties subsequently improved by directed evolution, yielding a biocatalyst capable of >15,000 total turnovers. Highlighting the industrial utility of this biocatalyst, the high-yielding, green, and efficient oxidation was demonstrated at kilogram scale for the synthesis of belzutifan.


Asunto(s)
Indenos , Oxigenasas de Función Mixta , Oxidación-Reducción , Hidroxilación , Biocatálisis
2.
Biochem Biophys Res Commun ; 675: 85-91, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454401

RESUMEN

Cardiotoxicity caused by adrenergic receptor agonists overdosing or stress-induced catecholamine release promotes cardiomyopathy, resembling Takotsubo cardiomyopathy (TC). TC is characterized by transient regional systolic dysfunction of the left ventricle. The animal models of TC and modalities for assessing regional wall motion abnormalities in animal models are lacking. We previously reported the protective role of a small noncoding microRNA-204-5p (miR-204) in cardiomyopathies, but its role in TC remains unknown. Here we compared the impact of miR-204 absence on phenylephrine (PE)-induced and transaortic constriction (TAC)-induced changes in cardiac muscle motion in the posterior and anterior apical, mid, and basal segments of the left ventricle using 2-dimensional speckle-tracking echocardiography (2-STE). Wildtype and miR-204-/- mice were subjected to cardiac stress in the form of PE for four weeks or TAC-induced pressure overload for five weeks. PE treatment increased longitudinal and radial motion in the apex of the left ventricle and shortened the peak motion time of all left ventricle segments. The TAC led to decreased longitudinal and radial motion in the left ventricle segments, and there was no difference in the peak motion time. Compared to wildtype mice, PE-induced peak cardiac muscle motion time in the anterior base of the left ventricle was significantly earlier in the miR-204-/- mice. There was no difference in TAC-induced peak cardiac muscle motion time between wildtype and miR-204-/- mice. Our findings demonstrate that PE and TAC induce regional wall motion abnormalities that 2-STE can detect. It also highlights the role of miR-204 in regulating cardiac muscle motion during catecholamine-induced cardiotoxicity.


Asunto(s)
Cardiomiopatías , MicroARNs , Cardiomiopatía de Takotsubo , Animales , Ratones , Fenilefrina/farmacología , Cardiotoxicidad , Ecocardiografía/métodos , MicroARNs/genética
3.
Biochem Biophys Res Commun ; 532(2): 167-172, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32950230

RESUMEN

MicroRNAs (miRs) are small non-coding RNAs that regulate the target gene expression. A change in miR profile in the pancreatic islets during diabetes is known, and multiple studies have demonstrated that miRs influence the pancreatic ß-cell function. The miR-204 is highly expressed in the ß-cells and reported to regulate insulin synthesis. Here we investigated whether the absence of miR-204 rescues the impaired glycemic control and obesity in the genetically diabetic (db/db) mice. We found that the db/db mice overexpressed miR-204 in the islets. The db/db mice lacking miR-204 (db/db-204-/-) initially develops hyperglycemia and obesity like the control (db/db) mice but later displayed a gradual improvement in glycemic control despite remaining obese. The db/db-204-/- mice had a lower fasting blood glucose and higher serum insulin level compared to the db/db mice. A homeostatic model assessment (HOMA) suggests the improvement of ß-cell function contributes to the improvement in glycemic control in db/db-204-/- mice. Next, we examined the cellular proliferation and endoplasmic reticulum (ER) stress and found an increased frequency of proliferating cells (PCNA + ve) and a decreased CHOP expression in the islets of db/db-204-/- mice. Next, we determined the effect of systemic miR-204 inhibition in improving glycemic control in the high-fat diet (HFD)-fed insulin-resistant mice. MiR-204 inhibition for 6 weeks improved the HFD-triggered impairment in glucose disposal. In conclusion, the absence of miR-204 improves ß-cell proliferation, decreases islet ER stress, and improves glycemic control with limited change in body weight in obese mice.


Asunto(s)
Células Secretoras de Insulina/fisiología , MicroARNs/genética , Obesidad/genética , Animales , Glucemia/genética , Glucemia/metabolismo , Proliferación Celular/fisiología , Diabetes Mellitus Experimental/genética , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/fisiología , Femenino , Control Glucémico , Hiperglucemia/genética , Insulina/sangre , Insulina/genética , Masculino , Ratones Noqueados , Ratones Mutantes , MicroARNs/antagonistas & inhibidores
4.
Proc Natl Acad Sci U S A ; 114(7): 1714-1719, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137876

RESUMEN

The 66-kDa Src homology 2 domain-containing protein (p66Shc) is a master regulator of reactive oxygen species (ROS). It is expressed in many tissues where it contributes to organ dysfunction by promoting oxidative stress. In the vasculature, p66Shc-induced ROS engenders endothelial dysfunction. Here we show that p66Shc is a direct target of the Sirtuin1 lysine deacetylase (Sirt1), and Sirt1-regulated acetylation of p66Shc governs its capacity to induce ROS. Using diabetes as an oxidative stimulus, we demonstrate that p66Shc is acetylated under high glucose conditions and is deacetylated by Sirt1 on lysine 81. High glucose-stimulated lysine acetylation of p66Shc facilitates its phosphorylation on serine 36 and translocation to the mitochondria, where it promotes hydrogen peroxide production. Endothelium-specific transgenic and global knockin mice expressing p66Shc that is not acetylatable on lysine 81 are protected from diabetic oxidative stress and vascular endothelial dysfunction. These findings show that p66Shc is a target of Sirt1, uncover a unique Sirt1-regulated lysine acetylation-dependent mechanism that governs the oxidative function of p66Shc, and demonstrate the importance of p66Shc lysine acetylation in vascular oxidative stress and diabetic vascular pathophysiology.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Endotelio Vascular/metabolismo , Estrés Oxidativo , Sirtuina 1/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Acetilación/efectos de los fármacos , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Endotelio Vascular/fisiopatología , Glucosa/farmacología , Células HEK293 , Humanos , Lisina/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Interferencia de ARN , Sirtuina 1/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética
5.
Am J Physiol Heart Circ Physiol ; 317(6): H1292-H1300, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31584834

RESUMEN

SUMOylation is a posttranslational modification of lysine residues. Modification of proteins by small ubiquitin-like modifiers (SUMO)1, -2, and -3 can achieve varied, and often unique, physiological and pathological effects. We looked for SUMO2-specific effects on vascular endothelial function. SUMO2 expression was upregulated in the aortic endothelium of hypercholesterolemic low-density lipoprotein receptor-deficient mice and was responsible for impairment of endothelium-dependent vasorelaxation in these mice. Moreover, overexpression of SUMO2 in aortas ex vivo, in cultured endothelial cells, and transgenically in the endothelium of mice increased vascular oxidative stress and impaired endothelium-dependent vasorelaxation. Conversely, inhibition of SUMO2 impaired physiological endothelium-dependent vasorelaxation in normocholesterolemic mice. These findings indicate that while endogenous SUMO2 is important in maintenance of normal endothelium-dependent vascular function, its upregulation impairs vascular homeostasis and contributes to hypercholesterolemia-induced endothelial dysfunction.NEW & NOTEWORTHY Sumoylation is known to impair vascular function; however, the role of specific SUMOs in the regulation of vascular function is not known. Using multiple complementary approaches, we show that hyper-SUMO2ylation impairs vascular endothelial function and increases vascular oxidative stress, whereas endogenous SUMO2 is essential for maintenance of normal physiological function of the vascular endothelium.


Asunto(s)
Endotelio Vascular/metabolismo , Hipercolesterolemia/metabolismo , Estrés Oxidativo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Vasodilatación , Animales , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipercolesterolemia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
6.
Arterioscler Thromb Vasc Biol ; 36(12): 2394-2403, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27789474

RESUMEN

OBJECTIVE: Diabetes mellitus causes vascular endothelial dysfunction and alters vascular microRNA expression. We investigated whether endothelial microRNA-34a (miR-34a) leads to diabetic vascular dysfunction by targeting endothelial sirtuin1 (Sirt1) and asked whether the oxidative stress protein p66Shc governs miR-34a expression in the diabetic endothelium. APPROACH AND RESULTS: MiR-34a is upregulated, and Sirt1 downregulated, in aortic endothelium of db/db and streptozotocin-induced diabetic mice. Systemic administration of miR-34a inhibitor, or endothelium-specific knockout of miR-34a, prevents downregulation of aortic Sirt1 and rescues impaired endothelium-dependent aortic vasorelaxation induced by diabetes mellitus. Moreover, overexpression of Sirt1 mitigates impaired endothelium-dependent vasorelaxation caused by miR-34a mimic ex vivo. Systemic infusion of miR-34a inhibitor or genetic ablation of endothelial miR-34a prevents downregulation of endothelial Sirt1 by high glucose. MiR-34a is upregulated, Sirt1 is downregulated, and oxidative stress (hydrogen peroxide) is induced in endothelial cells incubated with high glucose or the free fatty acid palmitate in vitro. Increase of hydrogen peroxide and induction of endothelial miR-34a by high glucose or palmitate in vitro is suppressed by knockdown of p66shc. In addition, overexpression of wild-type but not redox-deficient p66Shc upregulates miR-34a in endothelial cells. P66Shc-stimulated upregulation of endothelial miR-34a is suppressed by cell-permeable antioxidants. Finally, mice with global knockdown of p66Shc are protected from diabetes mellitus-induced upregulation of miR-34a and downregulation of Sirt1 in the endothelium. CONCLUSIONS: These data show that hyperglycemia and elevated free fatty acids in the diabetic milieu recruit p66Shc to upregulate endothelial miR-34a via an oxidant-sensitive mechanism, which leads to endothelial dysfunction by targeting Sirt1.


Asunto(s)
Aorta/enzimología , Angiopatías Diabéticas/enzimología , Endotelio Vascular/enzimología , MicroARNs/metabolismo , Sirtuina 1/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Vasodilatación , Animales , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/fisiopatología , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/genética , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/fisiopatología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Metabolismo Energético , Genotipo , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Estrés Oxidativo , Ácido Palmítico/metabolismo , Fenotipo , Interferencia de ARN , Transducción de Señal , Sirtuina 1/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/deficiencia , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
7.
Eur Phys J E Soft Matter ; 40(5): 52, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28455744

RESUMEN

The stability of a thin electrolyte liquid film driven by gravity over a vertical substrate is presented. A film thickness evolution equation is derived and solved numerically. The substrate is non-uniformly heated from below which is modeled by imposing a temperature profile at the liquid-solid interface. The electrohydrodynamics is included in the model with Maxwell's stress tensor. The governing flow and energy equations are simplified using the lubrication approximation. The Poisson-Boltzmann equation with Debye-Hückel approximation is used for the potential which is generated inside the film due to a charged layer at the liquid-solid interface. The positive temperature gradient at the substrate leads to the formation of a thermocapillary ridge due to an opposing Marangoni stress. This thermocapillary ridge becomes unstable beyond critical parameters related to Marangoni stress and convective energy loss at the free surface. The electroosmotic flow has no effect on the base profile of the film, but enhances its instability. A parameter space is presented delineating the stable and unstable regimes for the film dynamics.

8.
Arterioscler Thromb Vasc Biol ; 34(10): 2301-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25147340

RESUMEN

OBJECTIVE: Reactive oxygen species regulate canonical Wnt signaling. However, the role of the redox regulatory protein p66(Shc) in the canonical Wnt pathway is not known. We investigated whether p66(Shc) is essential for canonical Wnt signaling in the endothelium and determined whether the canonical Wnt pathway induces vascular endothelial dysfunction via p66(Shc)-mediated oxidative stress. APPROACH AND RESULTS: The canonical Wnt ligand Wnt3a induced phosphorylation (activation) of p66(Shc) in endothelial cells. Wnt3a-stimulated dephosphorylation of ß-catenin, and ß-catenin-dependent transcription, was inhibited by knockdown of p66(Shc). Exogenous H2O2-induced ß-catenin dephosphorylation was also mediated by p66(Shc). Moreover, p66(Shc) overexpression dephosphorylated ß-catenin and increased ß-catenin-dependent transcription, independent of Wnt3a ligand. P66(Shc)-induced ß-catenin dephosphorylation was inhibited by antioxidants N-acetyl cysteine and catalase. Wnt3a upregulated endothelial NADPH oxidase-4, and ß-catenin dephosphorylation was suppressed by knocking down NADPH oxidase-4 and by antioxidants. Wnt3a increased H2O2 levels in endothelial cells and impaired endothelium-dependent vasorelaxation in mouse aortas, both of which were rescued by p66(Shc) knockdown. P66(Shc) knockdown also inhibited adhesion of monocytes to Wnt3a-stimulated endothelial cells. Furthermore, constitutively active ß-catenin expression in the endothelium increased vascular reactive oxygen species and impaired endothelium-dependent vasorelaxation. In vivo, high-fat diet feeding-induced endothelial dysfunction in mice was associated with increased endothelial Wnt3a, dephosphorylated ß-catenin, and phosphorylated p66(Shc). High-fat diet-induced dephosphorylation of endothelial ß-catenin was diminished in mice in which p66(Shc) was knocked down. CONCLUSIONS: p66(Shc) plays a vital part in canonical Wnt signaling in the endothelium and mediates Wnt3a-stimulated endothelial oxidative stress and dysfunction.


Asunto(s)
Células Endoteliales/enzimología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Vía de Señalización Wnt , Proteína Wnt3A/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/enzimología , Bovinos , Técnicas de Cocultivo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Hiperlipidemias/enzimología , Hiperlipidemias/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosforilación , Interferencia de ARN , Proteínas Adaptadoras de la Señalización Shc/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Transfección , Células U937 , Vasodilatación , Vasodilatadores/farmacología , Proteína Wnt3A/genética , beta Catenina/metabolismo
9.
Biochem Biophys Res Commun ; 449(4): 496-501, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24845561

RESUMEN

BACKGROUND AND HYPOTHESIS: Hypercholesterolemia leads to a prothrombotic phenotype. Platelet hyperactivity associated with hypercholesterolemia has been attributed, in part, to oxidative stress. P66Shc is a well-known determinant of cellular and organismal oxidative stress. However, its role in platelet biology is not known. We hypothesized that p66Shc mediates platelet hyperactivation and hyperaggregation in hypercholesterolemia. METHODS AND RESULTS: P66Shc was expressed in both human and mouse platelets, as determined by qRT-PCR and immunoblotting. Mouse platelet p66Shc expression was upregulated by hypercholesterolemia induced by high-fat diet feeding. Compared to wild-type mice, high-fat diet-induced p66Shc expression in platelets was suppressed in transgenic mice expressing a short hairpin RNA targeting p66Shc (p66ShcRNAi). High-fat diet feeding of wild-type mice amplified surface P-selectin expression on platelets stimulated by the thrombin receptor agonist protease-activated receptor-4 (PAR4), and increased aggregation of platelets induced by thrombin. These exaggerated platelet responses induced by high-fat diet feeding were significantly blunted in p66ShcRNAi mice. Finally, thrombin-stimulated platelet reactive oxygen species were suppressed in p66ShcRNAi mice. CONCLUSIONS: Hypercholesterolemia stimulates p66Shc expression in platelets, promoting platelet oxidative stress, hyperreactivity and hyperaggregation via p66Shc.


Asunto(s)
Hipercolesterolemia/fisiopatología , Activación Plaquetaria , Agregación Plaquetaria , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Animales , Dieta Alta en Grasa , Humanos , Ratones , Ratones Transgénicos , Receptores Proteinasa-Activados/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src
10.
Arterioscler Thromb Vasc Biol ; 33(8): 1936-42, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23723375

RESUMEN

OBJECTIVE: Low-density lipoprotein (LDL) cholesterol induces endothelial dysfunction and is a major modifiable risk factor for coronary heart disease. Endothelial Kruppel-like Factor 2 (KLF2) is a transcription factor that is vital to endothelium-dependent vascular homeostasis. The purpose of this study is to determine whether and how LDL affects endothelial KLF2 expression. APPROACH AND RESULTS: LDL downregulates KLF2 expression and promoter activity in endothelial cells. LDL-induced decrease in KLF2 parallels changes in endothelial KLF2 target genes thrombomodulin, endothelial NO synthase, and plasminogen activator inhibitor-1. Pharmacological inhibition of DNA methyltransferases or knockdown of DNA methyltransferase 1 prevents downregulation of endothelial KLF2 by LDL. LDL induces endothelial DNA methyltransferase 1 expression and DNA methyltransferase activity. LDL stimulates binding of the DNA methyl-CpG-binding protein-2 and histone methyltransferase enhancer of zeste homolog 2, whereas decreases binding of the KLF2 transcriptional activator myocyte enhancing factor-2, to the KLF2 promoter in endothelial cells. Knockdown of myocyte enhancing factor-2, or mutation of the myocyte enhancing factor-2 site in the KLF2 promoter, abrogates LDL-induced downregulation of endothelial KLF2 and thrombomodulin, and KLF2 promoter activity. Similarly, knockdown of enhancer of zeste homolog 2 negates LDL-induced downregulation of KLF2 and thrombomodulin in endothelial cells. Finally, overexpression of KLF2 rescues LDL-induced clotting of platelet-rich plasma on endothelial cells. CONCLUSIONS: LDL represses endothelial KLF2 expression via DNA and histone methylation. Downregulation of KLF2 by LDL leads to a dysfunctional, hypercoagulable endothelium.


Asunto(s)
LDL-Colesterol/metabolismo , Metilación de ADN/fisiología , Células Endoteliales/fisiología , Epigénesis Genética/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Regulación hacia Abajo/fisiología , Células Endoteliales/citología , Proteína Potenciadora del Homólogo Zeste 2 , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Fenotipo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas/fisiología , Trombosis/genética , Trombosis/metabolismo , Transcripción Genética/fisiología , Vasculitis/genética , Vasculitis/metabolismo
11.
Cell Rep Phys Sci ; 4(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-38144419

RESUMEN

Gamma peptide nucleic acids (γPNAs) have recently garnered attention in diverse therapeutic and diagnostic applications. Serine and diethylene-glycol-containing γPNAs have been tested for numerous RNA-targeting purposes. Here, we comprehensively evaluated the in vitro and in vivo efficacy of pH-low insertion peptide (pHLIP)-conjugated serine and diethylene-based γPNAs. pHLIP targets only the acidic tumor microenvironment and not the normal cells. We synthesized and parallelly tested pHLIP-serine γPNAs and pHLIP-diethylene glycol γPNAs that target the seed region of microRNA-155, a microRNA that is upregulated in various cancers. We performed an all-atom molecular dynamics simulation-based computational study to elucidate the interaction of pHLIP-γPNA constructs with the lipid bilayer. We also determined the biodistribution and efficacy of the pHLIP constructs in the U2932-derived xenograft model. Overall, we established that the pHLIP-serine γPNAs show superior results in vivo compared with the pHLIP-diethylene glycol-based γPNA.

12.
Heart Rhythm ; 20(11): 1548-1557, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37543305

RESUMEN

BACKGROUND: Decreased peak sodium current (INa) and increased late sodium current (INa,L), through the cardiac sodium channel NaV1.5 encoded by SCN5A, cause arrhythmias. Many NaV1.5 posttranslational modifications have been reported. A recent report concluded that acute hypoxia increases INa,L by increasing a small ubiquitin-like modifier (SUMOylation) at K442-NaV1.5. OBJECTIVE: The purpose of this study was to determine whether and by what mechanisms SUMOylation alters INa, INa,L, and cardiac electrophysiology. METHODS: SUMOylation of NaV1.5 was detected by immunoprecipitation and immunoblotting. INa was measured by patch clamp with/without SUMO1 overexpression in HEK293 cells expressing wild-type (WT) or K442R-NaV1.5 and in neonatal rat cardiac myocytes (NRCMs). SUMOylation effects were studied in vivo by electrocardiograms and ambulatory telemetry using Scn5a heterozygous knockout (SCN5A+/-) mice and the de-SUMOylating protein SENP2 (AAV9-SENP2), AAV9-SUMO1, or the SUMOylation inhibitor anacardic acid. NaV1.5 trafficking was detected by immunofluorescence. RESULTS: NaV1.5 was SUMOylated in HEK293 cells, NRCMs, and human heart tissue. HyperSUMOylation at NaV1.5-K442 increased INa in NRCMs and in HEK cells overexpressing WT but not K442R-Nav1.5. SUMOylation did not alter other channel properties including INa,L. AAV9-SENP2 or anacardic acid decreased INa, prolonged QRS duration, and produced heart block and arrhythmias in SCN5A+/- mice, whereas AAV9-SUMO1 increased INa and shortened QRS duration. SUMO1 overexpression enhanced membrane localization of NaV1.5. CONCLUSION: SUMOylation of K442-Nav1.5 increases peak INa without changing INa,L, at least in part by altering membrane abundance. Our findings do not support SUMOylation as a mechanism for changes in INa,L. Nav1.5 SUMOylation may modify arrhythmic risk in disease states and represents a potential target for pharmacologic manipulation.


Asunto(s)
Miocitos Cardíacos , Sumoilación , Animales , Humanos , Ratones , Ratas , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células HEK293 , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Canales de Sodio/metabolismo
13.
Nat Commun ; 14(1): 5595, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696839

RESUMEN

Downregulation of endothelial Sirtuin1 (Sirt1) in insulin resistant states contributes to vascular dysfunction. Furthermore, Sirt1 deficiency in skeletal myocytes promotes insulin resistance. Here, we show that deletion of endothelial Sirt1, while impairing endothelial function, paradoxically improves skeletal muscle insulin sensitivity. Compared to wild-type mice, male mice lacking endothelial Sirt1 (E-Sirt1-KO) preferentially utilize glucose over fat, and have higher insulin sensitivity, glucose uptake, and Akt signaling in fast-twitch skeletal muscle. Enhanced insulin sensitivity of E-Sirt1-KO mice is transferrable to wild-type mice via the systemic circulation. Endothelial Sirt1 deficiency, by inhibiting autophagy and activating nuclear factor-kappa B signaling, augments expression and secretion of thymosin beta-4 (Tß4) that promotes insulin signaling in skeletal myotubes. Thus, unlike in skeletal myocytes, Sirt1 deficiency in the endothelium promotes glucose homeostasis by stimulating skeletal muscle insulin sensitivity through a blood-borne mechanism, and augmented secretion of Tß4 by Sirt1-deficient endothelial cells boosts insulin signaling in skeletal muscle cells.


Asunto(s)
Resistencia a la Insulina , Sirtuina 1 , Animales , Masculino , Ratones , Células Endoteliales , Endotelio , Glucosa , Insulina , Músculo Esquelético , Secretoma , Sirtuina 1/genética
14.
Adv Med Educ Pract ; 14: 157-166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36880093

RESUMEN

Background: Feedback collated at University College London Medical School (UCLMS) during the COVID pandemic identified how many students felt unprepared for their summative Objective Structured Clinical Examinations (OSCEs) despite attending mock face-to-face OSCEs. The aim of this study was to explore the role of virtual mock OSCES for improving student's sense of preparedness and confidence levels for their summative OSCEs. Methods: All Year 5 students (n=354) were eligible to participate in the virtual mock OSCEs and were sent a pre- and post-survey for completion. Hosted on Zoom in June 2021, each circuit comprised six stations, assessing history taking and communication skills only, in Care of the Older Person, Dermatology, Gynaecology, Paediatrics, Psychiatry and Urology. Results: Two hundred and sixty-six Year 5 students (n=354) participated in the virtual mock OSCEs, with 84 (32%) students completing both surveys. While a statistically significant increase in preparedness was demonstrated, there was no difference in overall confidence levels. In contrast, between specialties, a statistically significant increase in confidence levels was seen in all specialties barring Psychiatry. Despite half of the participants highlighting how the format did not sufficiently represent the summative OSCEs, all expressed interest in having virtual mock OSCEs incorporated into the undergraduate programme. Conclusion: The findings of this study suggest that virtual mock OSCEs have a role in preparing medical students for their summative exams. While this was not reflected in their overall confidence levels, this may be due to a lack of clinical exposure and higher anxiety levels among this cohort of students. Although virtual OSCEs cannot replicate the "in-person" experience, considering the logistical advantages, further research is required on how these sessions can be developed, to support the traditional format of face-to-face mock OSCEs within the undergraduate programme.

15.
Nutr Cancer ; 64(1): 121-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22171530

RESUMEN

We investigated the effect of insulin and diet-induced hyperinsulinemia on the growth of the PC-3 cells in vitro and discerned the growth promoting effect of insulin in the androgen-independent cells. Sprague-Dawley rats were kept on a high-fat diet for 4 wk for the induction of insulin resistance and hyperinsulinemia. Insulin alone or serum of the rats kept on either normal-pellet diet or high-fat diet was used to stimulate the serum-starved PC-3 cells growth in culture. S961, a high-affinity insulin-receptor antagonist, was used to confirm the insulin-mediated effects. Significant impairment in the glucose disposal rate and increase in the serum glucose and insulin levels was observed in the high-fat-diet-fed rats. The media supplemented with the serum of the high-fat-diet-fed rats accelerated the growth of the PC-3 cells in comparison to that of normal-pellet-diet-fed rats. Insulin treatment led to accelerated growth of the serum-starved PC-3 cells in a dose-dependent manner and inhibited by the S961 pretreatment. Insulin and serum of the diet-induced hyperinsulinemic rats promote the growth of androgen-independent prostate cancer PC-3 cells. Further, our results provide support for the concept that diet-associated elevation in insulin level may augment the growth of prostate cancer cells.


Asunto(s)
Dieta/efectos adversos , Hiperinsulinismo/etiología , Neoplasias de la Próstata/patología , Andrógenos/metabolismo , Animales , Glucemia/análisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Humanos , Insulina/farmacología , Resistencia a la Insulina , Masculino , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Insulina/antagonistas & inhibidores
16.
Cells ; 11(3)2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35159228

RESUMEN

MicroRNAs (miRs) are short non-coding RNAs that regulate the translation and stability of mRNAs to fine-tune gene expression [...].


Asunto(s)
MicroARNs , MicroARNs/metabolismo , ARN Mensajero
17.
J Med Chem ; 65(4): 3332-3342, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35133835

RESUMEN

The blood levels of microRNA-122 (miR-122) is associated with the severity of cardiovascular disorders, and targeting it with efficient and safer miR inhibitors could be a promising approach. Here, we report the generation of a γ-peptide nucleic acid (γPNA)-based miR-122 inhibitor (γP-122-I) that rescues vascular endothelial dysfunction in mice fed a high-fat diet. We synthesized diethylene glycol-containing γP-122-I and found that its systemic administration counteracted high-fat diet (HFD)-feeding-associated increase in blood and aortic miR-122 levels, impaired endothelial function, and reduced glycemic control. A comprehensive safety analysis established that γP-122-I affects neither the complete blood count nor biochemical tests of liver and kidney functions during acute exposure. In addition, long-term exposure to γP-122-I did not change the overall adiposity, or histology of the kidney, liver, and heart. Thus, γP-122-I rescues endothelial dysfunction without any evidence of toxicity in vivo and demonstrates the suitability of γPNA technology in generating efficient and safer miR inhibitors.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , MicroARNs/antagonistas & inhibidores , Ácidos Nucleicos de Péptidos/farmacología , Adiposidad/efectos de los fármacos , Animales , Recuento de Células Sanguíneas , Glucemia/metabolismo , Peso Corporal , Dieta Alta en Grasa , Diseño de Fármacos , Pruebas de Función Renal , Pruebas de Función Hepática , Ratones , Ratones Endogámicos C57BL , MicroARNs/sangre , Músculo Liso Vascular/efectos de los fármacos , Ácidos Nucleicos de Péptidos/efectos adversos
18.
Cells ; 11(16)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36010634

RESUMEN

Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a "molecular scissor" to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.


Asunto(s)
Dinaminas , Endocitosis , Dinaminas/metabolismo , Endocitosis/fisiología , Vesículas Transportadoras/metabolismo
19.
Clin Transl Med ; 12(7): e954, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35872650

RESUMEN

BACKGROUND: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS: LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS: Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Enfermedad de Leigh , Animales , Bradicardia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales , NAD/metabolismo
20.
Clin Transl Med ; 12(1): e693, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35060347

RESUMEN

BACKGROUND: MicroRNAs regulate cardiac hypertrophy development, which precedes and predicts the risk of heart failure. microRNA-204-5p (miR-204) is well expressed in cardiomyocytes, but its role in developing cardiac hypertrophy and cardiac dysfunction (CH/CD) remains poorly understood. METHODS: We performed RNA-sequencing, echocardiographic, and molecular/morphometric analysis of the heart of mice lacking or overexpressing miR-204 five weeks after trans-aortic constriction (TAC). The neonatal rat cardiomyocytes, H9C2, and HEK293 cells were used to determine the mechanistic role of miR-204. RESULTS: The stretch induces miR-204 expression, and miR-204 inhibits the stretch-induced hypertrophic response of H9C2 cells. The mice lacking miR-204 displayed a higher susceptibility to CH/CD during pressure overload, which was reversed by the adeno-associated virus serotype-9-mediated cardioselective miR-204 overexpression. Bioinformatic analysis of the cardiac transcriptomics of miR-204 knockout mice following pressure overload suggested deregulation of apelin-receptor (APJ) signalling. We found that the stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and hypertrophy-related genes expression depend on the APJ, and both of these effects are subject to miR-204 levels. The dynamin inhibitor dynasore inhibited both stretch-induced APJ endocytosis and ERK1/2 activation. In contrast, the miR-204-induced APJ endocytosis was neither inhibited by dynamin inhibitors (dynasore and dyngo) nor associated with ERK1/2 activation. We find that the miR-204 increases the expression of ras-associated binding proteins (e.g., Rab5a, Rab7) that regulate cellular endocytosis. CONCLUSIONS: Our results show that miR-204 regulates trafficking of APJ and confers resistance to pressure overload-induced CH/CD, and boosting miR-204 can inhibit the development of CH/CD.


Asunto(s)
Receptores de Apelina/antagonistas & inhibidores , Cardiomegalia/prevención & control , MicroARNs/farmacología , Animales , Receptores de Apelina/metabolismo , Cardiomegalia/tratamiento farmacológico , Modelos Animales de Enfermedad , Cardiopatías/tratamiento farmacológico , Cardiopatías/prevención & control , MicroARNs/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA