Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 20293, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645873

RESUMEN

Cryptochromes (CRY) are highly conserved signalling molecules that regulate circadian rhythms and are candidate radical pair based magnetoreceptors. Birds have at least four cryptochromes (CRY1a, CRY1b, CRY2, and CRY4), but few studies have interrogated their function. Here we investigate the expression, localisation and interactome of clCRY2 in the pigeon retina. We report that clCRY2 has two distinct transcript variants, clCRY2a, and a previously unreported splice isoform, clCRY2b which is larger in size. We show that clCRY2a mRNA is expressed in all retinal layers and clCRY2b is enriched in the inner and outer nuclear layer. To define the localisation and interaction network of clCRY2 we generated and validated a monoclonal antibody that detects both clCRY2 isoforms. Immunohistochemical studies revealed that clCRY2a/b is present in all retinal layers and is enriched in the outer limiting membrane and outer plexiform layer. Proteomic analysis showed clCRY2a/b interacts with typical circadian molecules (PER2, CLOCK, ARTNL), cell junction proteins (CTNNA1, CTNNA2) and components associated with the microtubule motor dynein (DYNC1LI2, DCTN1, DCTN2, DCTN3) within the retina. Collectively these data show that clCRY2 is a component of the avian circadian clock and unexpectedly associates with the microtubule cytoskeleton.


Asunto(s)
Criptocromos/metabolismo , Microtúbulos/metabolismo , Retina/metabolismo , Empalme Alternativo , Animales , Relojes Circadianos , Ritmo Circadiano/fisiología , Clonación Molecular , Columbidae/metabolismo , Variación Genética , Uniones Intercelulares , Espectrometría de Masas , Isoformas de Proteínas , Proteómica/métodos , Retina/patología
2.
J Pers Med ; 11(4)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917064

RESUMEN

Past decades demonstrate an increasing interest in herbal remedies in the public eye, with as many as 80% of people worldwide using these remedies as healthcare products, including those for skin health. Sea buckthorn and its derived products (oil; alcoholic extracts), rich in flavonoids and essential fatty acids, are among these healthcare products. Specifically, sea buckthorn and its derivatives are reported to have antioxidant and antitumor activity in dysplastic skin cells. On the other hand, evidence suggests that the alteration of lipid metabolism is related to increased malignant behavior. Given the paradoxical involvement of lipids in health and disease, we investigated how sea-buckthorn seed oil, rich in long-chain fatty acids, modifies the proliferation of normal and dysplastic skin cells in basal conditions, as well as under ultraviolet A (UVA) radiation. Using real-time analysis of normal and dysplastic human keratinocytes, we showed that sea-buckthorn seed oil stimulated the proliferation of dysplastic cells, while it also impaired the ability of both normal and dysplastic cells to migrate over a denuded area. Furthermore, UVA exposure increased the expression of CD36/SR-B2, a long-chain fatty acid translocator that is related to the metastatic behavior of tumor cells.

3.
Sci Adv ; 6(33): eabb9110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851187

RESUMEN

The biophysical and molecular mechanisms that enable animals to detect magnetic fields are unknown. It has been proposed that birds have a light-dependent magnetic compass that relies on the formation of radical pairs within cryptochrome molecules. Using spectroscopic methods, we show that pigeon cryptochrome clCRY4 is photoreduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues. We report that clCRY4 is broadly and stably expressed within the retina but enriched at synapses in the outer plexiform layer in a repetitive manner. A proteomic survey for retinal-specific clCRY4 interactors identified molecules that are involved in receptor signaling, including glutamate receptor-interacting protein 2, which colocalizes with clCRY4. Our data support a model whereby clCRY4 acts as an ultraviolet-blue photoreceptor and/or a light-dependent magnetosensor by modulating glutamatergic synapses between horizontal cells and cones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA