Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232716

RESUMEN

The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson's disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic ß-sitosterol ß-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.


Asunto(s)
Encéfalo , Complejo I de Transporte de Electrón , Mitocondrias , Estrés Oxidativo , Sinucleinopatías , alfa-Sinucleína , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Estrés Nitrosativo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Ratas , Sinucleinopatías/metabolismo , Sinucleinopatías/fisiopatología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
2.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670754

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid ß peptide (Aß) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aß clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aß. An increase in Aß amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aß or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Animales , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Encéfalo/patología , Humanos , Terapia Molecular Dirigida
3.
Cells ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891053

RESUMEN

The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.


Asunto(s)
Astrocitos , Enfermedades Neurodegenerativas , Astrocitos/metabolismo , Astrocitos/patología , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Animales , Fenotipo
4.
Front Neurol ; 12: 660087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912129

RESUMEN

The current pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021, coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2 (ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain areas and cell types. Thus, it is hypothesized that infection by this virus could generate or exacerbate neuropathological alterations. However, the molecular mechanisms that link COVID-19 disease and nerve damage are unclear. In this review, we describe the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze the neuropathologic mechanisms underlying this viral infection, and their potential relationship with the neurological manifestations described in patients with COVID-19, and the appearance or exacerbation of some neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA