Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(3): 429-445, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38479360

RESUMEN

Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.


Asunto(s)
Apoptosis , Gasderminas , Humanos , Animales , Ratones , Necrosis/metabolismo , Apoptosis/fisiología , Piroptosis/fisiología , Muerte Celular , Inflamasomas/metabolismo , Proteínas Quinasas/metabolismo
2.
Nat Immunol ; 20(4): 397-406, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742078

RESUMEN

Inflammasomes are one of the most important mechanisms for innate immune defense against microbial infection but are also known to drive various inflammatory disorders via processing and release of the cytokine IL-1ß. As research into the regulation and effects of inflammasomes in disease has rapidly expanded, a variety of cell types, including dendritic cells (DCs), have been suggested to be inflammasome competent. Here we describe a major fault in the widely used DC-inflammasome model of bone marrow-derived dendritic cells (BMDCs) generated with the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). We found that among GM-CSF bone marrow-derived cell populations, monocyte-derived macrophages, rather than BMDCs, were responsible for inflammasome activation and IL-1ß secretion. Therefore, GM-CSF bone marrow-derived cells should not be used to draw conclusions about DC-dependent inflammasome biology, although they remain a useful tool for analysis of inflammasome responses in monocytes-macrophages.


Asunto(s)
Células Dendríticas/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Inflamasomas/metabolismo , Macrófagos/inmunología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células Cultivadas , Interleucina-1beta/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Inmunológicos
3.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139355

RESUMEN

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Asunto(s)
COVID-19/inmunología , Caspasa 8/metabolismo , Interferón gamma/metabolismo , Linfohistiocitosis Hemofagocítica/inmunología , Macrófagos/inmunología , Mitocondrias/metabolismo , SARS-CoV-2/fisiología , Animales , Caspasa 8/genética , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Interferón gamma/genética , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Transducción de Señal , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
4.
Nat Immunol ; 24(2): 205-206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36658242
5.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735843

RESUMEN

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Asunto(s)
Apoptosis/inmunología , Macrófagos/inmunología , Necroptosis/inmunología , Piroptosis/inmunología , Infecciones por Salmonella/inmunología , Salmonella/inmunología , Animales , Caspasa 1/deficiencia , Caspasa 1/genética , Caspasa 12/deficiencia , Caspasa 12/genética , Caspasa 8/genética , Caspasas Iniciadoras/deficiencia , Caspasas Iniciadoras/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
6.
Cell ; 157(5): 1175-88, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24813849

RESUMEN

Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.


Asunto(s)
Genes Letales , Hematopoyesis , Inflamación/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Animales Recién Nacidos , Caspasa 8/metabolismo , Muerte Celular , Hígado/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo
7.
EMBO J ; 42(5): e110468, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36647737

RESUMEN

Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1ß maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1ß release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery. Namely, extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD processing that kills macrophages lacking both inflammasome and apoptosis signalling components (caspase-1, -3, -7, -11 and BID), while caspase-8 can still cause cell death in the absence of both GSDMD and GSDME when caspase-3 and caspase-7 are present. Neither caspase-3 and caspase-7-mediated activation of the pannexin-1 channel, or GSDMD loss, prevented NLRP3 inflammasome assembly and consequent caspase-1 and IL-1ß maturation downstream of XIAP inhibition and caspase-8 activation, even though the pannexin-1 channel was required for NLRP3 triggering upon mitochondrial apoptosis. These findings uncouple the mechanisms of cell death and NLRP3 activation resulting from extrinsic and intrinsic apoptosis signalling, reveal how XIAP loss can co-opt dual cell death programs, and uncover strategies for targeting the cell death and inflammatory pathways that result from XIAP deficiency.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Apoptosis , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Muerte Celular , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
8.
Immunity ; 49(3): 379-381, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231975

RESUMEN

The pore-forming protein GSDMD promotes cytokine release and induces pyroptotic cell death. In this issue of Immunity, Banerjee et al. (2018) document how GSDMD triggers potassium efflux to inhibit cGAS-STING and prevent damaging interferon production after bacterial infection.


Asunto(s)
Interferón Tipo I , Citosol , ADN , Homeostasis , Nucleotidiltransferasas/genética , Piroptosis
9.
Semin Immunol ; 70: 101832, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625331

RESUMEN

The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.


Asunto(s)
Apoptosis , Caspasa 8 , Piroptosis , Animales , Humanos , Ratones , Apoptosis/fisiología , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Caspasas/metabolismo , Inflamasomas/metabolismo , Piroptosis/fisiología
10.
EMBO Rep ; 24(11): e56865, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846472

RESUMEN

Programmed cell death pathways play an important role in innate immune responses to infection. Activation of intrinsic apoptosis promotes infected cell clearance; however, comparatively little is known about how this mode of cell death is regulated during infections and whether it can induce inflammation. Here, we identify that the pro-survival BCL-2 family member, A1, controls activation of the essential intrinsic apoptotic effectors BAX/BAK in macrophages and monocytes following bacterial lipopolysaccharide (LPS) sensing. We show that, due to its tight transcriptional and post-translational regulation, A1 acts as a molecular rheostat to regulate BAX/BAK-dependent apoptosis and the subsequent NLRP3 inflammasome-dependent and inflammasome-independent maturation of the inflammatory cytokine IL-1ß. Furthermore, induction of A1 expression in inflammatory monocytes limits cell death modalities and IL-1ß activation triggered by Neisseria gonorrhoeae-derived outer membrane vesicles (NOMVs). Consequently, A1-deficient mice exhibit heightened IL-1ß production in response to NOMV injection. These findings reveal that bacteria can induce A1 expression to delay myeloid cell death and inflammatory responses, which has implications for the development of host-directed antimicrobial therapeutics.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Células Mieloides/metabolismo , Muerte Celular , Interleucina-1beta/metabolismo
11.
Physiol Rev ; 97(3): 1165-1209, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615462

RESUMEN

Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the "guard hypothesis" whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.


Asunto(s)
Citoplasma/inmunología , Epítopos , Inmunidad Innata , Procesamiento Proteico-Postraduccional/inmunología , Receptores Inmunológicos/inmunología , Animales , Citoplasma/metabolismo , Humanos , Receptores Inmunológicos/metabolismo , Transducción de Señal
12.
Immunol Cell Biol ; 102(1): 58-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855066

RESUMEN

The clinical development of Natural Killer (NK) cell-mediated immunotherapy marks a milestone in the development of new cancer therapies and has gained traction due to the intrinsic ability of the NK cell to target and kill tumor cells. To fully harness the tumor killing ability of NK cells, we need to improve NK cell persistence and to overcome suppression of NK cell activation in the tumor microenvironment. The trans-membrane, protein tyrosine phosphatase CD45, regulates NK cell homeostasis, with the genetic loss of CD45 in mice resulting in increased numbers of mature NK cells. This suggests that CD45-deficient NK cells might display enhanced persistence following adoptive transfer. However, we demonstrate here that adoptive transfer of CD45-deficiency did not enhance NK cell persistence in mice, and instead, the homeostatic disturbance of NK cells in CD45-deficient mice stemmed from a developmental defect in the progenitor population. The enhanced maturation within the CD45-deficient NK cell compartment was intrinsic to the NK cell lineage, and independent of the developmental defect. CD45 is not a conventional immune checkpoint candidate, as systemic loss is detrimental to T and B cell development, compromising the adaptive immune system. Nonetheless, this study suggests that inhibition of CD45 in progenitor or stem cell populations may improve the yield of in vitro generated NK cells for adoptive therapy.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Animales , Ratones , Inmunoterapia , Inmunoterapia Adoptiva , Microambiente Tumoral
13.
Biochem J ; 479(10): 1083-1102, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35608339

RESUMEN

For over 15 years the lytic cell death termed pyroptosis was defined by its dependency on the inflammatory caspase, caspase-1, which, upon pathogen sensing, is activated by innate immune cytoplasmic protein complexes known as inflammasomes. However, this definition of pyroptosis changed when the pore-forming protein gasdermin D (GSDMD) was identified as the caspase-1 (and caspase-11) substrate required to mediate pyroptotic cell death. Consequently, pyroptosis has been redefined as a gasdermin-dependent cell death. Studies now show that, upon liberation of the N-terminal domain, five gasdermin family members, GSDMA, GSDMB, GSDMC, GSDMD and GSDME can all form plasma membrane pores to induce pyroptosis. Here, we review recent research into the diverse stimuli and cell death signaling pathways involved in the activation of gasdermins; death and toll-like receptor triggered caspase-8 activation of GSDMD or GSMDC, apoptotic caspase-3 activation of GSDME, perforin-granzyme A activation of GSDMB, and bacterial protease activation of GSDMA. We highlight findings that have begun to unravel the physiological situations and disease states that result from gasdermin signaling downstream of inflammasome activation, death receptor and mitochondrial apoptosis, and necroptosis. This new era in cell death research therefore holds significant promise in identifying how distinct, yet often networked, pyroptotic cell death pathways might be manipulated for therapeutic benefit to treat a range of malignant conditions associated with inflammation, infection and cancer.


Asunto(s)
Inflamasomas , Piroptosis , Caspasa 1/metabolismo , Caspasas/metabolismo , Inflamasomas/metabolismo , Proteínas de Unión a Fosfato/metabolismo
14.
Immunol Cell Biol ; 100(5): 312-322, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35233830

RESUMEN

The chemokine receptor CXCR3 is expressed on immune cells to co-ordinate lymphocyte activation and migration. CXCR3 binds three chemokine ligands, CXCL9, CXCL10 and CXCL11. These ligands display distinct expression patterns and ligand signaling biases; however, how each ligand functions individually and collaboratively is incompletely understood. CXCL9 and CXCL10 are considered pro-inflammatory chemokines during viral infection, while CXCL11 may induce a tolerizing state. The investigation of the individual role of CXCL11 in vivo has been hampered as C57BL/6 mice carry several mutations that result in a null allele. Here, CRISPR/Cas9 was used to correct these mutations on a C57BL/6 background. It was validated that CXCL11KI mice expressed CXCL11 protein in dendritic cells, spleen and lung. CXCL11KI mice were largely phenotypically indistinguishable from C57BL/6 mice, both at steady-state and during two models of viral infection. While CXCL11 expression did not modify acute antiviral responses, this study provides a new tool to understand the role of CXCL11 in other experimental settings.


Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL11/metabolismo , Virosis , Animales , Quimiocina CXCL10/genética , Quimiocina CXCL11/genética , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Inmunidad , Ligandos , Ratones , Ratones Endogámicos C57BL
15.
J Cell Sci ; 132(5)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709919

RESUMEN

Necroptosis is an inflammatory form of programmed cell death mediated by the pseudokinase mixed-lineage kinase domain-like protein (MLKL). Upon phosphorylation by receptor-interacting protein kinase-3 (RIPK3), MLKL oligomerizes, and translocates to and disrupts the plasma membrane, thereby causing necroptotic cell lysis. Herein, we show that activation of necroptosis in mouse dermal fibroblasts (MDFs) and HT-29 human colorectal cancer cells results in accumulation of the autophagic marker, lipidated LC3B (also known as MAP1LC3B), in an MLKL-dependent manner. Unexpectedly, the necroptosis-induced increase in lipidated LC3B was due to inhibition of autophagic flux, not the activation of autophagy. Inhibition of autophagy by MLKL correlated with a decrease in autophagosome and/or autolysosome function, and required the association of activated MLKL with intracellular membranes. Collectively, our findings uncover an additional role for the MLKL pseudokinase, namely to inhibit autophagy during necroptosis.


Asunto(s)
Autofagosomas/metabolismo , Neoplasias Colorrectales/metabolismo , Dermis/patología , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Quinasas/metabolismo , Animales , Autofagia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias Colorrectales/patología , Fibroblastos/patología , Técnicas de Inactivación de Genes , Células HT29 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necroptosis , Proteínas Quinasas/genética , Transporte de Proteínas
16.
Immunity ; 36(2): 215-27, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22365665

RESUMEN

Interleukin-1ß (IL-1ß) is a potent inflammatory cytokine that is usually cleaved and activated by inflammasome-associated caspase-1. To determine whether IL-1ß activation is regulated by inhibitor of apoptosis (IAP) proteins, we treated macrophages with an IAP-antagonist "Smac mimetic" compound or genetically deleted the genes that encode the three IAP family members cIAP1, cIAP2, and XIAP. After Toll-like receptor priming, IAP inhibition triggered cleavage of IL-1ß that was mediated not only by the NLRP3-caspase-1 inflammasome, but also by caspase-8 in a caspase-1-independent manner. In the absence of IAPs, rapid and full generation of active IL-1ß by the NLRP3-caspase-1 inflammasome, or by caspase-8, required the kinase RIP3 and reactive oxygen species production. These results demonstrate that activation of the cell death-inducing ripoptosome platform and RIP3 can generate bioactive IL-1ß and implicate them as additional targets for the treatment of pathological IL-1-driven inflammatory responses.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/metabolismo , Interleucina-1beta/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Proteínas Portadoras/agonistas , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Inflamasomas/inmunología , Inflamasomas/metabolismo , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/deficiencia , Proteínas Inhibidoras de la Apoptosis/genética , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/agonistas , Imitación Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas , Proteína Inhibidora de la Apoptosis Ligada a X/deficiencia , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
17.
J Immunol ; 203(3): 736-748, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31209100

RESUMEN

The pyroptotic cell death effector gasdermin D (GSDMD) is required for murine models of hereditary inflammasome-driven, IL-1ß-dependent, autoinflammatory disease, making it an attractive therapeutic target. However, the importance of GSDMD for more common conditions mediated by pathological IL-1ß activation, such as gout, remain unclear. In this study, we address whether GSDMD and the recently described GSDMD inhibitor necrosulfonamide (NSA) contribute to monosodium urate (MSU) crystal-induced cell death, IL-1ß release, and autoinflammation. We demonstrate that MSU crystals, the etiological agent of gout, rapidly activate GSDMD in murine macrophages. Despite this, the genetic deletion of GSDMD or the other lytic effector implicated in MSU crystal killing, mixed lineage kinase domain-like (MLKL), did not prevent MSU crystal-induced cell death. Consequently, GSDMD or MLKL loss did not hinder MSU crystal-mediated release of bioactive IL-1ß. Consistent with in vitro findings, IL-1ß induction and autoinflammation in MSU crystal-induced peritonitis was not reduced in GSDMD-deficient mice. Moreover, we show that the reported GSDMD inhibitor, NSA, blocks inflammasome priming and caspase-1 activation, thereby preventing pyroptosis independent of GSDMD targeting. The inhibition of cathepsins, widely implicated in particle-induced macrophage killing, also failed to prevent MSU crystal-mediated cell death. These findings 1) demonstrate that not all IL-1ß-driven autoinflammatory conditions will benefit from the therapeutic targeting of GSDMD, 2) document a unique mechanism of MSU crystal-induced macrophage cell death not rescued by pan-cathepsin inhibition, and 3) show that NSA inhibits inflammasomes upstream of GSDMD to prevent pyroptotic cell death and IL-1ß release.


Asunto(s)
Gota/patología , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/fisiología , Ácido Úrico/metabolismo , Acrilamidas/farmacología , Animales , Caspasa 1/metabolismo , Catepsinas/antagonistas & inhibidores , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nitrofuranos/farmacología , Peritonitis/inducido químicamente , Peritonitis/inmunología , Peritonitis/patología , Proteínas de Unión a Fosfato/genética , Proteínas Quinasas/genética , Estirenos/farmacología , Sulfonamidas/farmacología
18.
J Immunol ; 200(10): 3341-3346, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29661823

RESUMEN

The mammalian inhibitor of apoptosis proteins (IAPs) are key regulators of cell death and inflammation. A major function of IAPs is to block the formation of a cell death-inducing complex, termed the ripoptosome, which can trigger caspase-8-dependent apoptosis or caspase-independent necroptosis. Recent studies report that upon TLR4 or TNF receptor 1 (TNFR1) signaling in macrophages, the ripoptosome can also induce NLRP3 inflammasome formation and IL-1ß maturation. Whether neutrophils have the capacity to assemble a ripoptosome to induce cell death and inflammasome activation during TLR4 and TNFR1 signaling is unclear. In this study, we demonstrate that murine neutrophils can signal via TNFR1-driven ripoptosome assembly to induce both cell death and IL-1ß maturation. However, unlike macrophages, neutrophils suppress TLR4-dependent cell death and NLRP3 inflammasome activation during IAP inhibition via deficiencies in the CD14/TRIF arm of TLR4 signaling.


Asunto(s)
Apoptosis/fisiología , Muerte Celular/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Necrosis/metabolismo , Neutrófilos/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(6): E961-E969, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28096356

RESUMEN

Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1ß. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1ß secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1ß release, was not essential for MLKL-dependent death or IL-1ß secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1ß cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases.


Asunto(s)
Inflamasomas/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas/metabolismo , Animales , Apoptosis , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Línea Celular Tumoral , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necrosis , Proteínas Quinasas/química , Proteínas Quinasas/genética , Multimerización de Proteína/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA