Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37667913

RESUMEN

Endothelial dysfunction is a crucial factor in promoting organ failure during septic shock. However, the underlying mechanisms are unknown. Here, we show that kidney injury after lipopolysaccharide (LPS) insult leads to strong endothelial transcriptional and epigenetic responses. Furthermore, SOCS3 loss leads to an aggravation of the responses, demonstrating a causal role for the STAT3-SOCS3 signaling axis in the acute endothelial response to LPS. Experiments in cultured endothelial cells demonstrate that IL-6 mediates this response. Furthermore, bioinformatics analysis of in vivo and in vitro transcriptomics and epigenetics suggests a role for STAT, AP1 and interferon regulatory family (IRF) transcription factors. Knockdown of STAT3 or the AP1 member JunB partially prevents the changes in gene expression, demonstrating a role for these transcription factors. In conclusion, endothelial cells respond with a coordinated response that depends on overactivated IL-6 signaling via STAT3, JunB and possibly other transcription factors. Our findings provide evidence for a critical role of IL-6 signaling in regulating shock-induced epigenetic changes and sustained endothelial activation, offering a new therapeutic target to limit vascular dysfunction.


Asunto(s)
Metilación de ADN , Células Endoteliales , Metilación de ADN/genética , Interleucina-6/genética , Lipopolisacáridos , Endotelio
2.
Arterioscler Thromb Vasc Biol ; 41(3): 1105-1123, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33406884

RESUMEN

OBJECTIVE: Atherosclerosis predominantly forms in regions of oscillatory shear stress while regions of laminar shear stress are protected. This protection is partly through the endothelium in laminar flow regions expressing an anti-inflammatory and antithrombotic gene expression program. Several molecular pathways transmitting these distinct flow patterns to the endothelium have been defined. Our objective is to define the role of the MEF2 (myocyte enhancer factor 2) family of transcription factors in promoting an atheroprotective endothelium. Approach and Results: Here, we show through endothelial-specific deletion of the 3 MEF2 factors in the endothelium, Mef2a, -c, and -d, that MEF2 is a critical regulator of vascular homeostasis. MEF2 deficiency results in systemic inflammation, hemorrhage, thrombocytopenia, leukocytosis, and rapid lethality. Transcriptome analysis reveals that MEF2 is required for normal regulation of 3 pathways implicated in determining the flow responsiveness of the endothelium. Specifically, MEF2 is required for expression of Klf2 and Klf4, 2 partially redundant factors essential for promoting an anti-inflammatory and antithrombotic endothelium. This critical requirement results in phenotypic similarities between endothelial-specific deletions of Mef2a/c/d and Klf2/4. In addition, MEF2 regulates the expression of Notch family genes, Notch1, Dll1, and Jag1, which also promote an atheroprotective endothelium. In contrast to these atheroprotective pathways, MEF2 deficiency upregulates an atherosclerosis promoting pathway through increasing the amount of TAZ (transcriptional coactivator with PDZ-binding motif). CONCLUSIONS: Our results implicate MEF2 as a critical upstream regulator of several transcription factors responsible for gene expression programs that affect development of atherosclerosis and promote an anti-inflammatory and antithrombotic endothelium. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Factores de Transcripción MEF2/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Endotelio Vascular/patología , Femenino , Regulación de la Expresión Génica , Homeostasis , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción MEF2/deficiencia , Factores de Transcripción MEF2/genética , Masculino , Ratones , Ratones Noqueados , Receptores Notch/genética , Transducción de Señal , Transactivadores/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(31): 15560-15569, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31300538

RESUMEN

The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.


Asunto(s)
Cadherinas/metabolismo , Ventrículos Cardíacos/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Organogénesis , Animales , Cadherinas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Proteínas del Tejido Nervioso/genética
4.
Neuroimage ; 232: 117873, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647499

RESUMEN

Studies of attention emphasize cortical circuits for salience monitoring and top-down control. However, subcortical arousal systems have a major influence on dynamic cortical state. We hypothesize that task-related increases in attention begin with a "pulse" in subcortical arousal and cortical attention networks, which are reflected indirectly through transient fMRI signals. We conducted general linear model and model-free analyses of fMRI data from two cohorts and tasks with mixed block and event-related design. 46 adolescent subjects at our center and 362 normal adults from the Human Connectome Project participated. We identified a core shared network of transient fMRI increases in subcortical arousal and cortical salience/attention networks across cohorts and tasks. Specifically, we observed a transient pulse of fMRI increases both at task block onset and with individual task events in subcortical arousal areas including midbrain tegmentum, thalamus, nucleus basalis and striatum; cortical-subcortical salience network regions including the anterior insula/claustrum and anterior cingulate cortex/supplementary motor area; in dorsal attention network regions including dorsolateral frontal cortex and inferior parietal lobule; as well as in motor regions including cerebellum, and left hemisphere hand primary motor cortex. The transient pulse of fMRI increases in subcortical and cortical arousal and attention networks was consistent across tasks and study populations, whereas sustained activity in these same networks was more variable. The function of the transient pulse in these networks is unknown. However, given its anatomical distribution, it could participate in a neuromodulatory surge of activity in multiple parallel neurotransmitter systems facilitating dynamic changes in conscious attention.


Asunto(s)
Nivel de Alerta/fisiología , Atención/fisiología , Giro del Cíngulo/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Tálamo/fisiología , Adolescente , Adulto , Niño , Estudios de Cohortes , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Estimulación Luminosa/métodos , Tálamo/diagnóstico por imagen , Adulto Joven
5.
Eur J Nucl Med Mol Imaging ; 48(6): 1864-1875, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33210240

RESUMEN

PURPOSE: Postoperative infection still constitutes an important complication of spine surgery, and the optimal imaging modality for diagnosing postoperative spine infection has not yet been established. The aim of this prospective multicenter study was to assess the diagnostic performance of three imaging modalities in patients with suspected postoperative spine infection: MRI, [18F]FDG PET/CT, and SPECT/CT with 99mTc-UBI 29-41. METHODS: Patients had to undergo at least 2 out of the 3 imaging modalities investigated. Sixty-three patients enrolled fulfilled such criteria and were included in the final analysis: 15 patients underwent all 3 imaging modalities, while 48 patients underwent at least 2 imaging modalities (MRI + PET/CT, MRI + SPECT/CT, or PET/CT + SPECT/CT). Final diagnosis of postoperative spinal infection was based either on biopsy or on follow-up for at least 6 months. The MRI, PET/CT, and SPECT/CT scans were read blindly by experts at designated core laboratories. Spine surgery included metallic implants in 46/63 patients (73%); postoperative spine infection was diagnosed in 30/63 patients (48%). RESULTS: Significant discriminants between infection and no infection included fever (P = 0.041), discharge at the wound site (P < 0.0001), and elevated CRP (P = 0.042). There was no difference in the frequency of infection between patients who underwent surgery involving spinal implants versus those who did not. The diagnostic performances of MRI and [18F]FDG PET/CT analyzed as independent groups were equivalent, with values of the area under the ROC curve equal to 0.78 (95% CI: 0.64-0.92) and 0.80 (95% CI: 0.64-0.98), respectively. SPECT/CT with 99mTc-UBI 29-41 yielded either unacceptably low sensitivity (44%) or unacceptably low specificity (41%) when adopting more or less stringent interpretation criteria. The best diagnostic performance was observed when combining the results of MRI with those of [18F]FDG PET/CT, with an area under the ROC curve equal to 0.938 (95% CI: 0.80-1.00). CONCLUSION: [18F]FDG PET/CT and MRI both possess equally satisfactory diagnostic performance in patients with suspected postoperative spine infection, the best diagnostic performance being obtained by combining MRI with [18F]FDG PET/CT. The diagnostic performance of SPECT/CT with 99mTc-UBI 29-41 was suboptimal in the postoperative clinical setting explored with the present study.


Asunto(s)
Discitis , Fluorodesoxiglucosa F18 , Discitis/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos , Cintigrafía , Radiofármacos , Sensibilidad y Especificidad
6.
Cereb Cortex ; 30(5): 3074-3086, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31800015

RESUMEN

Recent work suggests an important role for cortical-subcortical networks in seizure-related loss of consciousness. Temporal lobe seizures disrupt subcortical arousal systems, which may lead to depressed cortical function and loss of consciousness. Extracellular recordings show ictal neocortical slow waves at about 1 Hz, but it is not known whether these simply represent seizure propagation or alternatively deep sleep-like activity, which should include cortical neuronal Up and Down states. In this study, using in vivo whole-cell recordings in a rat model of focal limbic seizures, we directly examine the electrophysiological properties of cortical neurons during seizures and deep anesthesia. We found that during seizures, the membrane potential of frontal cortical secondary motor cortex layer 5 neurons fluctuates between Up and Down states, with decreased input resistance and increased firing rate in Up states when compared to Down states. Importantly, Up and Down states in seizures are not significantly different from those in deep anesthesia, in terms of membrane potential, oscillation frequency, firing rate, and input resistance. By demonstrating these fundamental similarities in cortical electrophysiology between deep anesthesia and seizures, our results support the idea that a state of decreased cortical arousal may contribute to mechanisms of loss of consciousness during seizures.


Asunto(s)
Potenciales de Acción/fisiología , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Animales , Electrodos Implantados , Femenino , Ratas , Ratas Sprague-Dawley
7.
Development ; 144(9): 1635-1647, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28465335

RESUMEN

The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation.


Asunto(s)
Membrana Celular/metabolismo , Pericardio/citología , Pericardio/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Polaridad Celular , Proliferación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Espacio Intracelular/metabolismo , Ratones Noqueados , Modelos Biológicos , Miocardio/citología , Miocardio/metabolismo , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Epilepsia ; 61(1): 19-28, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31646628

RESUMEN

OBJECTIVE: Generalized epileptiform discharges (GEDs) can occur during seizures or without obvious clinical accompaniment. Motor vehicle driving risk during apparently subclinical GEDs is uncertain. Our goals were to develop a feasible, realistic test to evaluate driving safety during GEDs, and to begin evaluating electroencephalographic (EEG) features in relation to driving safety. METHODS: Subjects were aged ≥15 years with generalized epilepsy, GEDs on EEG, and no clinical seizures. Using a high-fidelity driving simulator (miniSim) with simultaneous EEG, a red oval visual stimulus was presented every 5 minutes for baseline testing, and with each GED. Participants were instructed to pull over as quickly and safely as possible with each stimulus. We analyzed driving and EEG signals during GEDs. RESULTS: Nine subjects were tested, and five experienced 88 GEDs total with mean duration 2.31 ± 1.89 (SD) seconds. Of these five subjects, three responded appropriately to all stimuli, one failed to respond to 75% of stimuli, and one stopped driving immediately during GEDs. GEDs with no response to stimuli were significantly longer than those with appropriate responses (8.47 ± 3.10 vs 1.85 ± 0.69 seconds, P < .001). Reaction times to stimuli during GEDs were significantly correlated with GED duration (r = 0.30, P = .04). In addition, EEG amplitude was greater for GEDs with no response to stimuli than GEDs with responses, both for overall root mean square voltage amplitude (66.14 µV vs 52.99 µV, P = .02) and for fractional power changes in the frequency range of waves (P < .05) and spikes (P < .001). SIGNIFICANCE: High-fidelity driving simulation is feasible for investigating driving behavior during GEDs. GEDs with longer duration and greater EEG amplitude showed more driving impairment. Future work with a large sample size may ultimately enable classification of GED EEG features to predict individual driving risk.


Asunto(s)
Conducción de Automóvil , Convulsiones/fisiopatología , Entrenamiento Simulado/métodos , Adolescente , Adulto , Electroencefalografía , Estudios de Factibilidad , Femenino , Humanos , Masculino , Proyectos Piloto , Adulto Joven
9.
PLoS Comput Biol ; 15(7): e1007126, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31276488

RESUMEN

Living creatures must accurately infer the nature of their environments. They do this despite being confronted by stochastic and context sensitive contingencies-and so must constantly update their beliefs regarding their uncertainty about what might come next. In this work, we examine how we deal with uncertainty that evolves over time. This prospective uncertainty (or imprecision) is referred to as volatility and has previously been linked to noradrenergic signals that originate in the locus coeruleus. Using pupillary dilatation as a measure of central noradrenergic signalling, we tested the hypothesis that changes in pupil diameter reflect inferences humans make about environmental volatility. To do so, we collected pupillometry data from participants presented with a stream of numbers. We generated these numbers from a process with varying degrees of volatility. By measuring pupillary dilatation in response to these stimuli-and simulating the inferences made by an ideal Bayesian observer of the same stimuli-we demonstrate that humans update their beliefs about environmental contingencies in a Bayes optimal way. We show this by comparing general linear (convolution) models that formalised competing hypotheses about the causes of pupillary changes. We found greater evidence for models that included Bayes optimal estimates of volatility than those without. We additionally explore the interaction between different causes of pupil dilation and suggest a quantitative approach to characterising a person's prior beliefs about volatility.


Asunto(s)
Modelos Biológicos , Pupila/fisiología , Acetilcolina/fisiología , Adolescente , Adulto , Teorema de Bayes , Biología Computacional , Simulación por Computador , Toma de Decisiones , Ambiente , Humanos , Locus Coeruleus/fisiología , Cadenas de Markov , Modelos Neurológicos , Norepinefrina/fisiología , Transducción de Señal , Incertidumbre , Adulto Joven
10.
J Vasc Surg ; 68(6S): 152S-163S, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30064838

RESUMEN

OBJECTIVE: Native arteriovenous fistulas (AVFs) for hemodialysis are susceptible to nonmaturation. Adverse features of local blood flow have been implicated in the formation of perianastomotic neointimal hyperplasia that may underpin nonmaturation. Whereas computational fluid dynamic simulations of idealized models highlight the importance of geometry on fluid and vessel wall interactions, little is known in vivo about AVF geometry and its role in adverse clinical outcomes. This study set out to examine the three-dimensional geometry of native AVFs and the geometric correlates of AVF failure. METHODS: As part of an observational study between 2013 and 2016, patients underwent creation of an upper limb AVF according to current surgical best practice. Phase-contrast magnetic resonance imaging was performed on the day of surgery to obtain luminal geometry along with ultrasound measurements of flow. Magnetic resonance imaging data sets were segmented and reconstructed for quantitative and qualitative analysis of local geometry. Clinical maturation was evaluated at 6 weeks. RESULTS: There were 60 patients who were successfully imaged on the day of surgery. Radiocephalic (n = 17), brachiocephalic (n = 40), and brachiobasilic (n = 3) fistulas were included in the study. Centerlines extracted from segmented vessel lumen exhibited significant heterogeneity in arterial nonplanarity and curvature. Furthermore, these features are more marked in brachiocephalic than in radiocephalic fistulas. Across the cohort, the projected bifurcation angle was 73 ± 16 degrees (mean ± standard deviation). Geometry was preserved at 2 weeks in 20 patients who underwent repeated imaging. A greater degree of arterial nonplanarity (log odds ratio [logOR], 0.95 per 0.1/vessel diameter; 95% confidence interval [CI], 0.22-1.90; P = .03) and a larger bifurcation angle (logOR, 0.05 per degree; 95% CI, 0.01-0.09; P = .02) are associated with a greater rate of maturation, as is fistula location (upper vs lower arm; logOR, -1.9; 95% CI, -3.2 to 0.7; P = .002). CONCLUSIONS: There is significant heterogeneity in the three-dimensional geometry of AVFs, in particular, arterial nonplanarity and curvature. In this largest cohort of AVF geometry to date, the effect of individual geometric correlates on maturation is uncertain but supports the premise that future modeling studies will need to acknowledge the complex geometry of AVFs.


Asunto(s)
Derivación Arteriovenosa Quirúrgica/métodos , Arteria Braquial/cirugía , Arteria Radial/cirugía , Diálisis Renal , Extremidad Superior/irrigación sanguínea , Adulto , Anciano , Derivación Arteriovenosa Quirúrgica/efectos adversos , Velocidad del Flujo Sanguíneo , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiopatología , Femenino , Humanos , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Modelación Específica para el Paciente , Estudios Prospectivos , Arteria Radial/diagnóstico por imagen , Arteria Radial/fisiopatología , Flujo Sanguíneo Regional , Insuficiencia del Tratamiento , Ultrasonografía Doppler
11.
Arterioscler Thromb Vasc Biol ; 37(7): 1380-1390, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28473437

RESUMEN

OBJECTIVE: Laminar flow activates myocyte enhancer factor 2 (MEF2) transcription factors in vitro to induce expression of atheroprotective genes in the endothelium. Here we sought to establish the role of Mef2c in the vascular endothelium in vivo. APPROACH AND RESULTS: To study endothelial Mef2c, we generated endothelial-specific deletion of Mef2c using Tie2-Cre or Cdh5-Cre-ERT2 and examined aortas and carotid arteries by en face immunofluorescence. We observed enhanced actin stress fiber formation in the Mef2c-deleted thoracic aortic endothelium (laminar flow region), similar to those observed in normal aortic inner curvature (disturbed flow region). Furthermore, Mef2c deletion resulted in the de novo formation of subendothelial intimal cells expressing markers of differentiated smooth muscle in the thoracic aortas and carotids. Lineage tracing showed that these cells were not of endothelial origin. To define early events in intimal development, we induced endothelial deletion of Mef2c and examined aortas at 4 and 12 weeks postinduction. The number of intimal cell clusters increased from 4 to 12 weeks, but the number of cells within a cluster peaked at 2 cells in both cases, suggesting ongoing migration but minimal proliferation. Moreover, we identified cells extending from the media through fenestrations in the internal elastic lamina into the intima, indicating transfenestral smooth muscle migration. Similar transfenestral migration was observed in wild-type carotid arteries ligated to induce neointimal formation. CONCLUSIONS: These results indicate that endothelial Mef2c regulates the endothelial actin cytoskeleton and inhibits smooth muscle cell migration into the intima.


Asunto(s)
Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Comunicación Paracrina , Túnica Íntima/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Arterias Carótidas/fisiopatología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/fisiopatología , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Genotipo , Hemodinámica , Humanos , Factores de Transcripción MEF2/deficiencia , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones Noqueados , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Neointima , Fenotipo , Interferencia de ARN , Flujo Sanguíneo Regional , Transducción de Señal , Factores de Tiempo , Transfección , Túnica Íntima/patología , Túnica Íntima/fisiopatología
12.
FASEB J ; 30(1): 214-29, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26373801

RESUMEN

The purpose of this study was to determine the role of canonical transient receptor potential 3 (TRPC3) channel in allergen-induced airway disease (AIAD) and its underlying signaling mechanisms. The procedures included (1) intravenous injection of lentiviral TRPC3 channel or nonsilencing short hairpin ribonucleic acid (shRNA) to make the channel knockdown (KD) or control mice, (2) allergen sensitization/challenge to induce AIAD, (3) patch-clamp recording and Ca(2+) imaging to examine the channel activity, and (4) gene manipulations and other methods to determine the underlying signaling mechanisms. The findings are that (1) intravenous or intranasal delivery of TRPC3 channel lentiviral shRNAs or blocker 1-[4-[(2,3,3-trichloro-1-oxo-2-propen-1-yl)amino]phenyl]-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid prevents AIAD in mice, (2) TRPC3 channel KD and overexpression, respectively, blocks and augments protein kinase C-α/nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor-α (PKC-α/IκB-α)-mediated or calcineurin/IκB-ß-dependent, NF-κB-dependent allergen-induced airway smooth muscle cell (ASMC) hyperproliferation and cyclin D1 (an important cell proliferation molecule) induction, and (3) the changes of the major molecules of the PKC-α/IκBα- and calcineurin/IκB-ß-dependent NF-κB signaling pathways are also observed in asthmatic human ASMCs. The conclusions are that TRPC3 channels plays an essential role in AIAD via the PKC-α/IκB-α- and calcineurin/IκB-ß-dependent NF-κB signaling pathways, and lentiviral shRNA or inhibitor of TRPC3 channels may become novel and effective treatments for AIAD.


Asunto(s)
FN-kappa B/metabolismo , Hipersensibilidad Respiratoria/metabolismo , Canales Catiónicos TRPC/genética , Potenciales de Acción , Animales , Calcineurina/metabolismo , Señalización del Calcio , Proliferación Celular , Células Cultivadas , Terapia Genética , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Ratones , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/genética , Proteína Quinasa C/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/terapia , Sistemas de Mensajero Secundario , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/metabolismo
13.
Emerg Infect Dis ; 20(4): 532-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24655358

RESUMEN

To understand geographic variation in travel-related illness acquired in distinct African regions, we used the GeoSentinel Surveillance Network database to analyze records for 16,893 ill travelers returning from Africa over a 14-year period. Travelers to northern Africa most commonly reported gastrointestinal illnesses and dog bites. Febrile illnesses were more common in travelers returning from sub-Saharan countries. Eleven travelers died, 9 of malaria; these deaths occurred mainly among male business travelers to sub-Saharan Africa. The profile of illness varied substantially by region: malaria predominated in travelers returning from Central and Western Africa; schistosomiasis, strongyloidiasis, and dengue from Eastern and Western Africa; and loaisis from Central Africa. There were few reports of vaccine-preventable infections, HIV infection, and tuberculosis. Geographic profiling of illness acquired during travel to Africa guides targeted pretravel advice, expedites diagnosis in ill returning travelers, and may influence destination choices in tourism.


Asunto(s)
Enfermedades Transmisibles/epidemiología , África/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Viaje
14.
Acta Med Philipp ; 58(8): 67-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812768

RESUMEN

Background: Worldwide, coronary artery disease (CAD) is a leading cause of mortality and morbidity and remains to be a top health priority in many countries. A non-invasive imaging modality for diagnosis of CAD such as single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI) is usually requested by cardiologists as it displays radiotracer distribution in the heart reflecting myocardial perfusion. The interpretation of SPECT-MPI is done visually by a nuclear medicine physician and is largely dependent on his clinical experience and showing significant inter-observer variability. Objective: The aim of the study is to apply a deep learning approach in the classification of SPECT-MPI for perfusion abnormalities using convolutional neural networks (CNN). Methods: A publicly available anonymized SPECT-MPI from a machine learning repository (https://www.kaggle.com/selcankaplan/spect-mpi) was used in this study involving 192 patients who underwent stress-test-rest Tc99m MPI. An exploratory approach of CNN hyperparameter selection to search for optimum neural network model was utilized with particular focus on various dropouts (0.2, 0.5, 0.7), batch sizes (8, 16, 32, 64), and number of dense nodes (32, 64, 128, 256). The base CNN model was also compared with the commonly used pre-trained CNNs in medical images such as VGG16, InceptionV3, DenseNet121 and ResNet50. All simulations experiments were performed in Kaggle using TensorFlow 2.6.0., Keras 2.6.0, and Python language 3.7.10. Results: The best performing base CNN model with parameters consisting of 0.7 dropout, batch size 8, and 32 dense nodes generated the highest normalized Matthews Correlation Coefficient at 0.909 and obtained 93.75% accuracy, 96.00% sensitivity, 96.00% precision, and 96.00% F1-score. It also obtained higher classification performance as compared to the pre-trained architectures. Conclusions: The results suggest that deep learning approaches through the use of CNN models can be deployed by nuclear medicine physicians in their clinical practice to further augment their decision skills in the interpretation of SPECT-MPI tests. These CNN models can also be used as a dependable and valid second opinion that can aid physicians as a decision-support tool as well as serve as teaching or learning materials for the less-experienced physicians particularly those still in their training career. These highlights the clinical utility of deep learning approaches through CNN models in the practice of nuclear cardiology.

15.
PLoS One ; 19(5): e0290485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722959

RESUMEN

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.


Asunto(s)
Cadherinas , Proteolisis , Ubiquitina-Proteína Ligasas , Humanos , Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Cadherinas/metabolismo , Adhesión Celular , Células HEK293 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
16.
Circ Res ; 109(5): 534-42, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21737791

RESUMEN

RATIONALE: The molecular correlate of the calcium release-activated calcium current (I(CRAC)), the channel protein Orai1, is upregulated in proliferative vascular smooth muscle cells (VSMC). However, the role of Orai1 in vascular disease remains largely unknown. OBJECTIVE: The goal of this study was to determine the role of Orai1 in neointima formation after balloon injury of rat carotid arteries and its potential upregulation in a mouse model of VSMC remodeling. METHODS AND RESULTS: Lentiviral particles encoding short-hairpin RNA (shRNA) targeting either Orai1 (shOrai1) or STIM1 (shSTIM1) caused knockdown of their respective target mRNA and proteins and abrogated store-operated calcium entry and I(CRAC) in VSMC; control shRNA was targeted to luciferase (shLuciferase). Balloon injury of rat carotid arteries upregulated protein expression of Orai1, STIM1, and calcium-calmodulin kinase IIdelta2 (CamKIIδ2); increased proliferation assessed by Ki67 and PCNA and decreased protein expression of myosin heavy chain in medial and neointimal VSMC. Incubation of the injured vessel with shOrai1 prevented Orai1, STIM1, and CamKIIδ2 upregulation in the media and neointima; inhibited cell proliferation and markedly reduced neointima formation 14 days post injury; similar results were obtained with shSTIM1. VSMC Orai1 and STIM1 knockdown inhibited nuclear factor for activated T-cell (NFAT) nuclear translocation and activity. Furthermore, Orai1 and STIM1 were upregulated in mice carotid arteries subjected to ligation. CONCLUSIONS: Orai1 is upregulated in VSMC during vascular injury and is required for NFAT activity, VSMC proliferation, and neointima formation following balloon injury of rat carotids. Orai1 provides a novel target for control of VSMC remodeling during vascular injury or disease.


Asunto(s)
Canales de Calcio/fisiología , Neointima/metabolismo , Neointima/patología , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Animales , Cateterismo/efectos adversos , Proliferación Celular , Células Cultivadas , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Neointima/genética , Proteína ORAI1 , Ratas , Ratas Sprague-Dawley , Lesiones del Sistema Vascular/genética
17.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609155

RESUMEN

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.

18.
Nat Commun ; 14(1): 117, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627270

RESUMEN

Absence seizures are brief episodes of impaired consciousness, behavioral arrest, and unresponsiveness, with yet-unknown neuronal mechanisms. Here we report that an awake female rat model recapitulates the behavioral, electroencephalographic, and cortical functional magnetic resonance imaging characteristics of human absence seizures. Neuronally, seizures feature overall decreased but rhythmic firing of neurons in cortex and thalamus. Individual cortical and thalamic neurons express one of four distinct patterns of seizure-associated activity, one of which causes a transient initial peak in overall firing at seizure onset, and another which drives sustained decreases in overall firing. 40-60 s before seizure onset there begins a decline in low frequency electroencephalographic activity, neuronal firing, and behavior, but an increase in higher frequency electroencephalography and rhythmicity of neuronal firing. Our findings demonstrate that prolonged brain state changes precede consciousness-impairing seizures, and that during seizures distinct functional groups of cortical and thalamic neurons produce an overall transient firing increase followed by a sustained firing decrease, and increased rhythmicity.


Asunto(s)
Estado de Conciencia , Epilepsia Tipo Ausencia , Femenino , Ratas , Humanos , Animales , Estado de Conciencia/fisiología , Roedores , Convulsiones , Tálamo , Electroencefalografía/métodos , Neuronas/fisiología , Corteza Cerebral
19.
Am J Physiol Cell Physiol ; 303(4): C385-95, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22648953

RESUMEN

Leukocyte transendothelial migration (TEM) is regulated by several signaling pathways including Src family kinases (SFK) and the small RhoGTPases. Previous studies have shown that vascular endothelial-cadherin (VE-cad) forms a complex with ß-,γ-, and p120-catenins and this complex disassociates to form a transient gap during leukocyte TEM. Additionally, p120-catenin (p120-1A) overexpression in human umbilical vein endothelial cells (HUVEC) stabilizes VE-cad surface expression, prevents tyrosine phosphorylation of VE-cad, and inhibits leukocyte TEM. Based on reports showing that p120 overexpression in fibroblasts or epithelial cells inhibits RhoA and activates Rac and Cdc42 GTPases, and on other reports showing that RhoA activation in endothelial cells is necessary for leukocyte TEM, we reasoned that p120 overexpression inhibited TEM through inhibition of RhoA. To test this idea, we overexpressed a mutant p120 isoform, p120-4A, which does not interact with RhoA. p120-4A colocalized with VE-cad in HUVEC junctions and enhanced VE-cad surface expression, similar to overexpression of p120-1A. Interestingly, overexpression of either p120-4A or p120-1A dramatically blocked TEM, and overexpression of p120-1A in HUVEC did not affect RhoA basal activity or activation of RhoA and Rac induced by thrombin or ICAM-1 crosslinking. In contrast, biochemical studies revealed that overexpression of p120-1A reduced activated pY416-Src association with VE-cad. In summary, p120 overexpression inhibits neutrophil TEM independently of an effect on RhoA or Rac and instead blocks TEM by preventing VE-cad tyrosine phosphorylation and association of active Src with the VE-cad complex.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Cateninas/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Antígenos CD/genética , Cadherinas/genética , Cateninas/genética , Movimiento Celular/fisiología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Fosforilación , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína de Unión al GTP rhoA/genética , Catenina delta
20.
Pflugers Arch ; 464(5): 481-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23014880

RESUMEN

Airway smooth muscle cell (ASMC) remodeling contributes to the structural changes in the airways that are central to the clinical manifestations of asthma. Ca(2+) signals play an important role in ASMC remodeling through control of ASMC migration and hypertrophy/proliferation. Upregulation of STIM1 and Orai1 proteins, the molecular components of the store-operated Ca(2+) entry (SOCE) pathway, has recently emerged as an important mediator of vascular remodeling. However, the potential upregulation of STIM1 and Orai1 in asthmatic airways remains unknown. An important smooth muscle migratory agonist with major contributions to ASMC remodeling is the platelet-derived growth factor (PDGF). Nevertheless, the Ca(2+) entry route activated by PDGF in ASMC remains elusive. Here, we show that STIM1 and Orai1 protein levels are greatly upregulated in ASMC isolated from ovalbumin-challenged asthmatic mice, compared to control mice. Furthermore, we show that PDGF activates a Ca(2+) entry pathway in rat primary ASMC that is pharmacologically reminiscent of SOCE. Molecular knockdown of STIM1 and Orai1 proteins inhibited PDGF-activated Ca(2+) entry in these cells. Whole-cell patch clamp recordings revealed the activation of Ca(2+) release-activated Ca(2+) (CRAC) current by PDGF in ASMC. These CRAC currents were abrogated upon either STIM1 or Orai1 knockdown. We show that either STIM1 or Orai1 knockdown significantly inhibited ASMC proliferation and chemotactic migration in response to PDGF. These results implicate STIM1 and Orai1 in PDGF-induced ASMC proliferation and migration and suggest the potential use of STIM1 and Orai1 as targets for ASMC remodeling during asthma.


Asunto(s)
Asma/metabolismo , Asma/fisiopatología , Canales de Calcio/metabolismo , Señalización del Calcio , Glicoproteínas de Membrana/metabolismo , Miocitos del Músculo Liso/fisiología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Animales , Asma/inducido químicamente , Calcio/metabolismo , Canales de Calcio/genética , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Masculino , Glicoproteínas de Membrana/genética , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1 , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Molécula de Interacción Estromal 1 , Tráquea/citología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA