RESUMEN
In forests, bacteria and fungi are key players in wood degradation. Still, studies focusing on bacterial and fungal successions during the decomposition process depending on the wood types (i.e. sapwood and heartwood) remain scarce. This study aimed to understand the effect of wood type on the dynamics of microbial ecological guilds in wood decomposition. Using Illumina metabarcoding, bacterial and fungal communities were monitored every 3 months for 3 years from Quercus petraea wood discs placed on forest soil. Wood density and microbial enzymes involved in biopolymer degradation were measured. We observed rapid changes in the bacterial and fungal communities and microbial ecological guilds associated with wood decomposition throughout the experiment. Bacterial and fungal succession dynamics were very contrasted between sapwood and heartwood. The initial microbial communities were quickly replaced by new bacterial and fungal assemblages in the sapwood. Conversely, some initial functional guilds (i.e. endophytes and yeasts) persisted all along the experiment in heartwood and finally became dominant, possibly limiting the development of saprotrophic fungi. Our data also suggested a significant role of bacteria in nitrogen cycle during wood decomposition.
Asunto(s)
Micobioma , Quercus , Bacterias/metabolismo , Bosques , Hongos/genética , Hongos/metabolismo , Quercus/microbiología , Microbiología del Suelo , Madera/microbiologíaRESUMEN
High-throughput sequencing has become a prominent tool to assess plant-associated microbial diversity. Still, some technical challenges remain in characterising these communities, notably due to plant and fungal DNA co-amplification. Fungal-specific primers, Peptide Nucleic Acid (PNA) clamps, or adjusting PCR conditions are approaches to limit plant DNA contamination. However, a systematic comparison of these factors and their interactions, which could limit plant DNA contamination in the study of plant mycobiota, is still lacking. Here, three primers targeting the ITS2 region were evaluated alone or in combination with PNA clamps both on nettle (Urtica dioica) root DNA and a mock community. PNA clamps did not improve the richness or diversity of the fungal communities but increased the number of fungal reads. Among the tested factors, the most significant was the primer pair. Specifically, the 5.8S-Fun/ITS4-Fun pair exhibited a higher OTU richness but fewer fungal reads. Our study demonstrates that the choice of primers is critical for limiting plant and fungal DNA co-amplification. PNA clamps increase the number of fungal reads when ITS2 is targeted but do not result in higher fungal diversity recovery at high sequencing depth. At lower read depths, PNA clamps might enhance microbial diversity quantification for primer pairs lacking fungal specificity.
RESUMEN
Marginal lands have been proposed to produce non-food crop biomass for energy or green materials. For this purpose, the selection, implementation, and growth optimization of plant species on such lands are key elements to investigate to achieve relevant plant yields. Stinging nettle (Urtica dioica) is a herbaceous perennial that grows spontaneously on contaminated lands and was described as suitable to produce fibers for material applications. Two mercury-contaminated soils from industrial wastelands with different properties (grassland soil and sediment landfill) were used in this study to assess the potential growth of stinging nettle in a greenhouse mesocosm experiment. Two organic amendments were studied for their impact on nettle growth. The solid digestate from organic food wastes significantly doubled plant biomass whereas the compost from green wastes had a lower impact. The highest doses of organic amendments significantly increased the number of fibers, which doubled following digestate application, while reducing leaf Hg concentration. Both amendments significantly improved soil respiration and enzymatic activities linked to the microbial biomass in the soil from the sediment landfill by the end of the experiment. In the context of a phytomanagement scenario, solid digestate would be a preferred amendment resource to improve nettle production on industrial wastelands.
RESUMEN
The stinging nettle Urticadioica L. is a perennial crop with low fertilizer and pesticide requirements, well adapted to a wide range of environmental conditions. It has been successfully grown in most European climatic zones while also promoting local flora and fauna diversity. The cultivation of nettle could help meet the strong increase in demand for raw materials based on plant fibers as a substitute for artificial fibers in sectors as diverse as the textile and automotive industries. In the present review, we present a historical perspective of selection, harvest, and fiber processing features where the state of the art of nettle varietal selection is detailed. A synthesis of the general knowledge about its biology, adaptability, and genetics constituents, highlighting gaps in our current knowledge on interactions with other organisms, is provided. We further addressed cultivation and processing features, putting a special emphasis on harvesting systems and fiber extraction processes to improve fiber yield and quality. Various uses in industrial processes and notably for the restoration of marginal lands and avenues of future research on this high-value multi-use plant for the global fiber market are described.
RESUMEN
Stinging nettle (Urtica dioica L.) raises growing interest in phytomanagement because it commonly grows under poplar Short Rotation Coppices (SRC) set up at trace-metal (TM) contaminated sites and provides high-quality herbaceous fibres. The mycobiome of this non-mycorhizal plant and its capacity to adapt to TM-contaminated environments remains unknown. This study aimed at characterizing the mycobiome associated with nettle and poplar roots co-occurring at a TM-contaminated site. Plant root barcoding using the fungi-specific ITS1F-ITS2 primers and Illumina MiSeq technology revealed that nettle and poplar had distinct root fungal communities. The nettle mycobiome was dominated by Pezizomycetes from known endophytic taxa and from the supposedly saprotrophic genus Kotlabaea (which was the most abundant). Several ectomycorrhizal fungi such as Inocybe (Agaricomycetes) and Tuber (Pezizomycetes) species were associated with the poplar roots. Most of the Pezizomycetes taxa were present in the highly TM-contaminated area whereas Agaricomycetes tended to be reduced. Despite being a known non-mycorrhizal plant, nettle was associated with a significant proportion of ectomycorrhizal OTU (9.7%), suggesting some connexions between the poplar and the nettle root mycobiomes. Finally, our study raised the interest in reconsidering the fungal networking beyond known mycorrhizal interactions.