Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Eng ; 30: 61-68, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25908186

RESUMEN

Coordination between cell populations via prevailing metabolic cues has been noted as a promising approach to connect synthetic devices and drive phenotypic or product outcomes. However, there has been little progress in developing 'controller cells' to modulate metabolic cues and guide these systems. In this work, we developed 'controller cells' that manipulate the molecular connection between cells by modulating the bacterial signal molecule, autoinducer-2, that is secreted as a quorum sensing (QS) signal by many bacterial species. Specifically, we have engineered Escherichia coli to overexpress components responsible for autoinducer uptake (lsrACDB), phosphorylation (lsrK), and degradation (lsrFG), thereby attenuating cell-cell communication among populations. Further, we developed a simple mathematical model that recapitulates experimental data and characterizes the dynamic balance among the various uptake mechanisms. This study revealed two controller 'knobs' that serve to increase AI-2 uptake: overexpression of the AI-2 transporter, LsrACDB, which controls removal of extracellular AI-2, and overexpression of the AI-2 kinase, LsrK, which increases the net uptake rate by limiting secretion of AI-2 back into the extracellular environment. We find that the overexpression of lsrACDBFG results in an extraordinarily high AI-2 uptake rate that is capable of completely silencing QS-mediated gene expression among wild-type cells. We demonstrate utility by modulating naturally occurring processes of chemotaxis and biofilm formation. We envision that 'controller cells' that modulate bacterial behavior by manipulating molecular communication, will find use in a variety of applications, particularly those employing natural or synthetic bacterial consortia.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Biosíntesis de Proteínas
2.
Biomed Microdevices ; 16(1): 55-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24037662

RESUMEN

Microbubbles are spherical cavities formed in thermally cured polydimethylsiloxane (PDMS) using the gas expansion molding technique. Microbubble cavity arrays are generated by casting PDMS over a silicon wafer mold containing arrays of deep etched pits. To be useful in various high throughput cell culture and sorting applications it is imperative that uniform micron-sized cavities can be formed over large areas (in(2)). This paper provides an in-depth quantitative analysis of the fabrication parameters that effect the microbubble cavity formation efficiency and size. These include (1) the hydrophobic coating of the mold, (2) the mold pit dimensions, (3) the spatial arrangement of the pit openings, (4) the curing temperature of PDMS pre-polymer, (5) PDMS thickness, and (6) the presence and composition of residual gas in the PDMS pre-polymer mixture. Results suggest that the principles of heterogeneous nucleation and gas diffusion govern microbubble cavity formation, and that surface tension prevents detachment of the vapor bubble that forms in the PDMS over the pit. Paramerters are defined that enable the fabrication of large format arrays with uniform cavity size over 6 in(2) with a coefficient-of-variation <10 %. The architecture of the microbubble cavity is uniquely advantageous for cell culture. Large format arrays provide a highly versatile system that can be adapted for use in various high-throughput cell sorting applications. Herein, we demonstrate the use of microbubble cavity arrays to dissect the cellular heterogeneity that exists in a tumorigenic cutaneous squamous cell carcinoma cell line at the single cell level.


Asunto(s)
Separación Celular/métodos , Dimetilpolisiloxanos/química , Estudios de Evaluación como Asunto , Microburbujas , Carcinoma de Células Escamosas/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Calor , Humanos , Células Madre Neoplásicas/metabolismo , Polímeros/química , Silicio/química , Análisis de la Célula Individual , Propiedades de Superficie
3.
Biotechniques ; 62(1): 31-36, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28118813

RESUMEN

Scientists often exploit the motility of peritrichously flagellated bacteria for various applications. A common alteration is modifying the frequency of mid-movement changes in direction, known as tumbles. Such differences in bacterial swimming patterns can prove difficult to quantify, especially for those without access to high-speed optical equipment. Traditionally, scientists have resorted to less accurate techniques, such as soft agar plate assays, or have been forced to invest in costly equipment. Here, we present TumbleScore, software designed to track and quantify bacterial movies with slow, as well as fast, frame-rates. Developed and fully contained within MATLAB, TumbleScore processes motility videos and returns pertinent tumbling metrics, including: (i) linear speed, (ii) rotational speed, (iii) percentage of angle changes below a given threshold, and (iv) ratio of total path length to Euclidian distance, or arc-chord ratio (ACR). In addition, TumbleScore produces a "rose graph" visualization of bacterial paths. The software was validated using both fabricated and experimental motility videos.


Asunto(s)
Movimiento Celular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Programas Informáticos , Escherichia coli/fisiología , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA