Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 96(23): e0136022, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36416587

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several malignancies in people living with HIV, including primary effusion lymphoma (PEL). PEL cell lines exhibit oncogene addictions to both viral and cellular genes. Using CRISPR screens, we previously identified cellular oncogene addictions in PEL cell lines, including MCL1. MCL1 is a member of the BCL2 family, which functions to prevent intrinsic apoptosis and has been implicated in several cancers. Despite the overlapping functions of the BCL2 family members, PEL cells are dependent only on MCL1, suggesting that MCL1 may have nonredundant functions. To investigate why PEL cells exhibit selective addiction to MCL1, we inactivated the intrinsic apoptosis pathway by engineering BAX/BAK1 double knockout cells. In this context, PEL cells become resistant to MCL1 knockdown or MCL1 inactivation by the MCL1 inhibitor S63845, indicating that the main function of MCL1 in PEL cells is to prevent BAX/BAK1-mediated apoptosis. The selective requirement to MCL1 is due to MCL1 being expressed in excess over the BCL2 family. Ectopic expression of several BCL2 family proteins, as well as the KSHV BCL2 homolog, significantly decreased basal caspase 3/7 activity and buffered against staurosporine-induced apoptosis. Finally, overexpressed BCL2 family members can functionally substitute for MCL1, when it is inhibited by S63845. Together, our data indicate that the expression levels of the BCL2 family likely explain why PEL tumor cells are highly addicted to MCL1. Importantly, our results suggest that caution should be taken when considering MCL1 inhibitors as a monotherapy regimen for PEL because resistance can develop easily. IMPORTANCE Primary effusion lymphoma (PEL) is caused by Kaposi's sarcoma-associated herpesvirus. We showed previously that PEL cell lines require the antiapoptotic protein MCL1 for survival but not the other BCL2 family proteins. This selective dependence on MCL1 is unexpected as the BCL2 family functions similarly in preventing intrinsic apoptosis. Recently, new roles for MCL1 not shared with the BCL2 family have emerged. Here, we show that noncanonical functions of MCL1 are unlikely essential. Instead, MCL1 functions mainly to prevent apoptosis. The specific requirement to MCL1 is due to MCL1 being expressed in excess over the BCL2 family. Consistent with this model, shifting these expression ratios changes the requirement away from MCL1 and toward the dominant BCL2 family gene. Together, our results indicate that although MCL1 is an attractive chemotherapeutic target to treat PEL, careful consideration must be taken, as resistance to MCL1-specific inhibitors easily develops through BCL2 family overexpression.


Asunto(s)
Herpesvirus Humano 8 , Linfoma de Efusión Primaria , Humanos , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Herpesvirus Humano 8/fisiología , Linfoma de Efusión Primaria/genética , Linfoma de Efusión Primaria/patología , Linfoma de Efusión Primaria/virología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
J Gen Virol ; 96(9): 2928-2937, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26296571

RESUMEN

Specific sequence changes in codons 70 and 91 of the hepatitis C virus genotype 1b (HCV GT1b) core gene have been associated with increased risk of hepatocellular carcinoma (HCC). Essentially all previous studies were conducted in Asian populations with a wide range of liver disease, and none were conducted specifically in GT1a-infected individuals. We conducted a pilot study in a multiethnic population in the USA with HCV-related cirrhosis to determine if this association extended to GT1a-infected individuals and to determine if other sequence changes in the HCV core gene were associated with HCC risk. HCV core gene sequences from sera of 90 GT1 HCV carriers with cirrhosis (42 with HCC) were analysed using standard RT-PCR-based procedures. Nucleotide sequence data were compared with reference sequences available from GenBank. The frequency of sequence changes in codon 91 was not statistically different between HCC (7/19) and non-HCC (11/22) GT1b carriers. In GT1a carriers, sequence changes in codon 91 were observed less often than in GT1b carriers but were not observed in non-HCC subjects (4/23 vs 0/26, P = 0.03, Fisher's exact test). Sequence changes in codon 70 were not distributed differently between HCC and non-HCC GT1a and 1b carriers. Most importantly, for GT1a carriers, a panel of specific nucleotide changes in other codons was collectively present in all subjects with HCC, but not in any of the non-HCC patients. The utility of this test panel for early detection of HCC in GT1a-infected individuals needs to be assessed in larger populations, including longitudinal studies.


Asunto(s)
Carcinoma Hepatocelular/virología , Hepacivirus/genética , Antígenos del Núcleo de la Hepatitis B/genética , Hepatitis C Crónica/virología , Neoplasias Hepáticas/virología , Adulto , Anciano , Secuencia de Bases , Codón , Femenino , Genotipo , Hepacivirus/clasificación , Hepacivirus/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Factores de Riesgo
3.
J Virol ; 88(18): 10738-47, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24991013

RESUMEN

UNLABELLED: Noroviruses (NoV) are members of the family Caliciviridae. The human NoV open reading frame 1 (ORF1) encodes a 200-kDa polyprotein which is cleaved by the viral 20-kDa 3C-like protease (Pro, NS6) into 6 nonstructural proteins that are necessary for viral replication. The NoV ORF1 polyprotein is processed in a specific order, with "early" sites (NS1/2-3 and NS3-4) being cleaved rapidly and three "late" sites (NS4-5, NS5-6, and NS6-7) processed subsequently and less efficiently. Previously, we demonstrated that the NoV polyprotein processing order is directly correlated with the efficiency of the enzyme, which is regulated by the primary amino acid sequences surrounding ORF1 cleavage sites. Using fluorescence resonance energy transfer (FRET) peptides representing the NS2-3 and NS6-7 ORF1 cleavage sites, we now demonstrate that the amino acids spanning positions P4 to P2' (P4-P2') surrounding each site comprise the core sequence controlling NoV protease enzyme efficiency. Furthermore, the NoV polyprotein self-processing order can be altered by interchanging this core sequence between NS2-3 and any of the three late sites in in vitro transcription-translation assays. We also demonstrate that the nature of the side chain at the P3 position for the NS1/2-3 (Nterm/NTPase) site confers significant influence on enzyme catalysis (kcat and kcat/Km), a feature overlooked in previous structural studies. Molecular modeling provides possible explanations for the P3 interactions with NoV protease. IMPORTANCE: Noroviruses (NoV) are the prevailing cause of nonbacterial acute gastroenteritis worldwide and pose a significant financial burden on health care systems. Proteolytic processing of the viral nonstructural polyprotein is required for norovirus replication. Previously, the core sequence of amino acids surrounding the scissile bonds responsible for governing the relative processing order had not been determined. Using both FRET-based peptides and full-length NoV polyprotein, we have successfully demonstrated that the core sequences spanning positions P4-P2' surrounding the NS2-3, NS4-5, NS5-6, and NS6-7 cleavage sites contain all of the structural information necessary to control processing order. We also provide insight into a previously overlooked role for the NS2-3 P3 residue in enzyme efficiency. This article builds upon our previous studies on NoV protease enzymatic activities and polyprotein processing order. Our work provides significant additional insight into understanding viral polyprotein processing and has important implications for improving the design of inhibitors targeting the NoV protease.


Asunto(s)
Infecciones por Caliciviridae/virología , Norovirus/metabolismo , Virus Norwalk/metabolismo , Poliproteínas/química , Poliproteínas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Humanos , Norovirus/química , Norovirus/genética , Virus Norwalk/química , Virus Norwalk/genética , Sistemas de Lectura Abierta , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Poliproteínas/genética , Procesamiento Proteico-Postraduccional , Proteínas no Estructurales Virales/genética
4.
Front Public Health ; 10: 974667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091505

RESUMEN

Next Generation Sequencing (NGS) is the gold standard for the detection of new variants of SARS-CoV-2 including those which have immune escape properties, high infectivity, and variable severity. This test is helpful in genomic surveillance, for planning appropriate and timely public health interventions. But labs with NGS facilities are not available in small or medium research settings due to the high cost of setting up such a facility. Transportation of samples from many places to few centers for NGS testing also produces delays due to transportation and sample overload leading in turn to delays in patient management and community interventions. This becomes more important for patients traveling from hotspot regions or those suspected of harboring a new variant. Another major issue is the high cost of NGS-based tests. Thus, it may not be a good option for an economically viable surveillance program requiring immediate result generation and patient follow-up. The current study used a cost-effective facility which can be set up in a common research lab and which is replicable in similar centers with expertise in Sanger nucleotide sequencing. More samples can be processed at a time and can generate the results in a maximum of 2 days (1 day for a 24 h working lab). We analyzed the nucleotide sequence of the Receptor Binding Domain (RBD) region of SARS-CoV-2 by the Sanger sequencing using in-house developed methods. The SARS-CoV-2 variant surveillance was done during the period of March 2021 to May 2022 in the Northern region of Kerala, a state in India with a population of 36.4 million, for implementing appropriate timely interventions. Our findings broadly agree with those from elsewhere in India and other countries during the period.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , SARS-CoV-2/genética
5.
Front Public Health ; 10: 818545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252095

RESUMEN

We report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India, which had caused fatal encephalitis in a 12-year-old boy and the outbreak response, which led to the successful containment of the disease and the related investigations. Quantitative real-time reverse transcription (RT)-PCR, ELISA-based antibody detection, and whole genome sequencing (WGS) were performed to confirm the NiV infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs, and blood samples for NiV screening by real-time RT-PCR and anti-NiV bat immunoglobulin G (IgG) ELISA. A plaque reduction neutralization test was performed for the detection of neutralizing antibodies. Nipah viral RNA could be detected from blood, bronchial wash, endotracheal (ET) secretion, and cerebrospinal fluid (CSF) and anti-NiV immunoglobulin M (IgM) antibodies from the serum sample of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius (P. medius) and 37.73% of Rousettus leschenaultia (R. leschenaultia). Neutralizing antibodies against NiV could be detected in P. medius. Stringent surveillance and awareness campaigns need to be implemented in the area to reduce human-bat interactions and minimize spillover events, which can lead to sporadic outbreaks of NiV.


Asunto(s)
COVID-19 , Virus Nipah , Niño , Brotes de Enfermedades , Humanos , Masculino , Virus Nipah/genética , Pandemias , SARS-CoV-2
6.
Front Genet ; 12: 630542, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815467

RESUMEN

Coronavirus disease 2019 (COVID-19) rapidly spread from a city in China to almost every country in the world, affecting millions of individuals. The rapid increase in the COVID-19 cases in the state of Kerala in India has necessitated the understanding of SARS-CoV-2 genetic epidemiology. We sequenced 200 samples from patients in Kerala using COVIDSeq protocol amplicon-based sequencing. The analysis identified 166 high-quality single-nucleotide variants encompassing four novel variants and 89 new variants in the Indian isolated SARS-CoV-2. Phylogenetic and haplotype analysis revealed that the virus was dominated by three distinct introductions followed by local spread suggesting recent outbreaks and that it belongs to the A2a clade. Further analysis of the functional variants revealed that two variants in the S gene associated with increased infectivity and five variants mapped in primer binding sites affect the efficacy of RT-PCR. To the best of our knowledge, this is the first and most comprehensive report of SARS-CoV-2 genetic epidemiology from Kerala.

7.
Antimicrob Agents Chemother ; 52(9): 3385-93, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18606844

RESUMEN

West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen approximately 32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with K(i) values of 3.2 +/- 0.3 microM and 3.4 +/- 0.6 microM, respectively. These compounds inhibited the dengue virus type 2 protease with K(i) values of 28.6 +/- 5.1 microM and 30.2 +/- 8.6 microM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 +/- 0.4 microM; selectivity index, 100), presumably by inhibition of polyprotein processing.


Asunto(s)
Antivirales , Serina Endopeptidasas/efectos de los fármacos , Inhibidores de Serina Proteinasa , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/enzimología , Animales , Antivirales/química , Antivirales/farmacología , Chlorocebus aethiops , Cricetinae , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Viral/metabolismo , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Relación Estructura-Actividad , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Virus del Nilo Occidental/fisiología
8.
Virology ; 503: 37-45, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28110248

RESUMEN

The VPg protein of human Norovirus (hNoV) is a multi-functional protein essential for virus replication. The un-cleaved viral precursor protein, ProPol (NS5-6) was 100-fold more efficient in catalyzing VPg nucleotidylylation than the mature polymerase (Pol, NS6), suggesting a specific intracellular role for ProPol. Sequential and single-point alanine substitutions revealed that several positively charged amino acids in the N-terminal region of VPg regulate its nucleotidylylation by ProPol. We provide evidence that VPg directly binds NTPs, inhibition of binding inhibits nucleotidylylation, and NTP binding appears to involve the first 13 amino acids of the protein. Substitution of multiple positively charged amino acids within the first 12 amino acids of the N-terminal region inhibits nucleotidylylation without affecting binding. Substitution of only Lys20 abolishes nucleotidylylation, but not NTP binding. These studies indicate that positively charged amino acids in the first 20 amino acids of hNoV VPg regulate its nucleotidylylation though several potential mechanisms.


Asunto(s)
Norovirus/genética , Nucleótidos/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Humanos , ARN Viral/metabolismo , Replicación Viral
10.
Virology ; 438(1): 20-7, 2013 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-23399036

RESUMEN

A highly active, fluorescence-based, in vitro assay for human Norovirus protease from genogroup I and II viruses was optimized utilizing as little as 0.25µM enzyme, pH 7.6, and substrate:enzyme of 50-100. Activity in Tris-HCl or sodium phosphate buffers was 2-fold less than HEPES, and 2-fold lower for buffer concentrations over 10mM. Protease activity at pH 7.6 was 73% (GI) or 63% (GII) of activity at the optimal pH 9.0. Sodium inhibited activity 2-3 fold, while potassium, calcium, magnesium, and manganese inhibited 5-10 fold. Differences in efficiency due to pH, buffer, and cations were due to changes in kcat and not Km. Norovirus protease bound short RNAs representing the 3' or 5' ends of the virus, inhibiting protease activity (IC50 3-5µM) in a non-competitive manner. Previous reports indicated participation of the protease in the Norovirus replicase complex. The current studies provide initial support for a defined role for the viral protease in Norovirus replication.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Norovirus/enzimología , ARN Viral/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Proteasas Virales 3C , Tampones (Química) , Activadores de Enzimas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Metales/metabolismo , Unión Proteica
11.
Virology ; 444(1-2): 218-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23850457

RESUMEN

The human norovirus (NoV) polyprotein is cleaved into mature non-structural proteins by both mature NoV protease (Pro, NS6) and its un-cleaved precursor (ProPol, NS6-7). Processing order is well-established with 'early' and 'late' cleavages, but the governing enzymatic mechanisms are unknown. Enzyme kinetics of a GII Pro and ProPol were analyzed using synthetic peptides representing the five natural polyprotein cleavage sites. The relative efficiency of cleavage of the individual peptides was consistent with established polyprotein processing order, and primarily correlated with enzyme turnover (kcat). Enzymatic efficiencies (kcat/Km) of ProPol at all five sites were equivalent to, or greater than, that of Pro. Binding affinities (Km) for the two least efficiently cleaved sites (p20/VPg, VPg/Pro) were 2-4-fold higher than the other sites. This work further defines the role of ProPol in NoV polyprotein cleavage, and demonstrates that human norovirus polyprotein processing order is primarily an inherent property of enzymatic activity.


Asunto(s)
Norovirus/fisiología , Péptido Hidrolasas/metabolismo , Poliproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Virales/metabolismo , Humanos , Cinética
12.
Antiviral Res ; 91(3): 233-40, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21703309

RESUMEN

Nitazoxanide (NTZ) exhibits potent antiviral activity against hepatitis C virus (HCV) in cell culture. Previously, HCV replicon-containing cell lines resistant to NTZ were selected, but transfer the HCV NTZ-resistance phenotype was not observed following transfection of whole cell RNA. To further explore the nature of the resistance of HCV to NTZ, full length HCV replicon sequences were obtained from two NTZ-resistant (NTZ-11, TIZ-9), and the parental (RP7) cell lines. Numerous nucleotide changes were observed in individual HCV genomes relative to the RP7 HCV consensus sequence, but no common mutations in the HCV non-structural genes or 3'-UTR were detected. A cluster of single nucleotide mutations was found within a 5-base portion of the 5'-UTR in 20/21 HCV replicon sequences from both resistant cell lines. Three mutations (5'-UTR G17A, G18A, C20U) were individually inserted into CON1 ('wild-type') HCV replicons, showed reduced replication (5 to 50-fold), but none conferred resistance to NTZ. RP7, NTZ-11, and TIZ-9 were cured of HCV genomes by serial passage under interferon. Transfection of cured NTZ-11 and TIZ-9 with either whole cell RNAs from RP7, NTZ-11, or TIZ-9, 'wild-type' or the 5'-UTR mutation-containing replicon RNAs exhibited an NTZ-resistance phenotype. TIZ (the active metabolite of NTZ) was found to be inactive against the activity of HCV polymerase, protease, and helicase in enzymatic assays. These data confirm previous speculations that HCV resistance to NTZ is not due to mutations in the virus, and demonstrate that HCV resistance and most likely the antiviral activity of TIZ are due to interactions with cellular target(s).


Asunto(s)
Farmacorresistencia Viral/genética , Hepacivirus/genética , Hepatitis C/virología , Interacciones Huésped-Patógeno , Tiazoles/farmacología , Proteínas no Estructurales Virales/genética , Antivirales/farmacología , Secuencia de Bases , Línea Celular , Clonación Molecular , Farmacorresistencia Viral/efectos de los fármacos , Escherichia coli , Genotipo , Hepacivirus/metabolismo , Hepatitis C/genética , Hepatitis C/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Interferones/farmacología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/efectos de los fármacos , Mutación/genética , Nitrocompuestos , Fenotipo , Plásmidos , ARN Viral/química , ARN Viral/genética , ARN Viral/farmacología , Replicón/efectos de los fármacos , Replicón/genética , Transformación Bacteriana , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA