RESUMEN
The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate-growth responses for the 1943-1972 and 1973-2002 periods and characterizing site-level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad-scale climate-growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
RESUMEN
To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.
Asunto(s)
Ecosistema , Tecnología de Sensores Remotos , Bosques , Árboles , Cambio Climático , Europa Oriental , Europa (Continente)RESUMEN
Global changes occurring under different environmental conditions have changed stand competition, as well as nutrient and light availability, which has resulted in changes in productivity. Therefore, in the present study, the characteristics of tree-ring width formation of the prevailing Lithuanian tree species, Norway spruce, Scots pine and silver and downy birch, and key factors resulting in their differences during the last 36-year period were investigated at forest sites located on poor mineral oligotrophic and on nutrient-rich organic mesoeutrophic soils. The aim of the study was as follows: first, to separately detect the maximum possible seasonal effect of three groups of variables - meteorology, acidifying pollutants and surface ozone on the stem basal area increment (BAI) of the evaluated tree species; second, to assess the significance of each group of variables affecting the BAI of these tree species integrally with the remaining groups of variables. Norway spruce was found to be well adapted to recent environmental changes, which makes it one of the most favourable tree species for silviculture in the northeastern part of Europe. The rapid increases recorded in growth intensity since 1980 were attributed to the increase in air temperature, precipitation amount, nitrogen deposition during the vegetative stage and reductions in SO2 concentrations and S deposition. Scots pine demonstrated the highest level of resilience and capacity to adapt to recent global changes because its reaction to both negative and favourable environmental factors was best expressed. Silver and downy birch tree reactions to the effects of air concentrations of acidifying compounds, their deposition and surface ozone concentrations were the least expressed; however, a significant decline in growth intensity indicated that these tree species experienced a reduced resistance to recent changes in environmental conditions in the mature and over-mature age groups.
Asunto(s)
Monitoreo del Ambiente/métodos , Bosques , Árboles/química , Adaptación Fisiológica , Contaminantes Atmosféricos/análisis , Betula/crecimiento & desarrollo , Lituania , Nitrógeno , Picea/crecimiento & desarrollo , Pinus sylvestris/crecimiento & desarrollo , Tallos de la Planta/químicaRESUMEN
This study aimed to explore if changes in stem increment of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone concentration when the impact of tree dendrometric parameters (age, diameter) and crown defoliation are accounted for. More than 200 dominant and codominant trees from 12 pine stands, for which crown defoliation had been assessed since 1994, were chosen for increment boring and basal area increment computing. Stands are located in Lithuanian national parks, where since 1994-95 Integrated Monitoring Stations have been operating. Findings of the study provide statistical evidence that peak concentrations of ambient ozone (O3) can have a negative impact on pine tree stem growth under field conditions where O3 exposure is below phytotoxic levels.