Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35017303

RESUMEN

Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES-oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.


Asunto(s)
Electrones , Espacio Extracelular/química , Compuestos Férricos/química , Bases de Datos como Asunto , Compuestos de Hierro/química , Minerales/química , Termodinámica
2.
Environ Sci Technol ; 58(21): 9250-9260, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38741559

RESUMEN

The potential of recycled iron phosphates (FePs), e.g., vivianites (Fe3(PO4)2·8H2O) and Fe(III)-rich phosphorus (P) adsorbent materials, as phosphorus fertilizer is limited by the strong interaction between Fe and P. In this study, the efficiency of FePs as P fertilizer was explored by applying them as granules or powder in flooded strongly P-fixing soils (acid and calcareous), thereby taking advantage of increased P release induced by reductive dissolution of P-bearing Fe(III) minerals. First, no P diffusion from granular FeP fertilizers into flooded soils was detectable by the diffusive gradient in thin films (DGT) technique and microfocused X-ray fluorescence (µ-XRF) analysis of thin soil sections, in contrast to detectable P diffusion away from granules of soluble triple superphosphate (TSP) fertilizer. On the contrary, powdered FePs demonstrated an excellent increase in extractable P (1 mM CaCl2) in a 120-day incubation experiment in flooded soils. Second, a pot experiment was performed with rice (Oryza sativa) grown in flooded acid and calcareous soils. The fertilizer value of FePs was remarkable when dosed as powder, as it was even up to 3-fold higher than TSP in the acid soil and similar to TSP in the calcareous soil. The beneficial effect of FeP over TSP in the acid soil is attributed to the slow release of P from FePs, which allows to partly overcome P fixation. The promising results of FePs as P fertilizer applied as powders in flooded soils debunk the generally accepted idea that FePs are poor sources of P while demonstrating the importance of the timing of FeP fertilizer application.


Asunto(s)
Fertilizantes , Oryza , Fosfatos , Fósforo , Suelo , Oryza/química , Fósforo/química , Fosfatos/química , Suelo/química , Reciclaje , Hierro/química , Agricultura
3.
Environ Sci Technol ; 56(19): 13696-13708, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36095156

RESUMEN

Arsenic (As) is a toxic element, and elevated levels of geogenic As in drinking water pose a threat to the health of several hundred million people worldwide. In this study, we used microfluidics in combination with optical microscopy and X-ray spectroscopy to investigate zerovalent iron (ZVI) corrosion, secondary iron (Fe) phase formation, and As retention processes at the pore scale in ZVI-based water treatment filters. Two 250 µm thick microchannels filled with single ZVI and quartz grain layers were operated intermittently (12 h flow/12 h no-flow) with synthetic groundwater (pH 7.5; 570 µg/L As(III)) over 13 and 49 days. Initially, lepidocrocite (Lp) and carbonate green rust (GRC) were the dominant secondary Fe-phases and underwent cyclic transformation. During no-flow, lepidocrocite partially transformed into GRC and small fractions of magnetite, kinetically limited by Fe(II) diffusion or by decreasing corrosion rates. When flow resumed, GRC rapidly and nearly completely transformed back into lepidocrocite. Longer filter operation combined with a prolonged no-flow period accelerated magnetite formation. Phosphate adsorption onto Fe-phases allowed for downstream calcium carbonate precipitation and, consequently, accelerated anoxic ZVI corrosion. Arsenic was retained on Fe-coated quartz grains and in zones of cyclic Lp-GRC transformation. Our results suggest that intermittent filter operation leads to denser secondary Fe-solids and thereby ensures prolonged filter performance.


Asunto(s)
Arsénico , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/química , Carbonato de Calcio , Compuestos Férricos , Óxido Ferrosoférrico/química , Humanos , Hierro/química , Microfluídica , Fosfatos , Cuarzo , Contaminantes Químicos del Agua/química
4.
Environ Sci Technol ; 55(8): 4862-4870, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33764067

RESUMEN

We examined the uptake of Tl(I) by two hexagonal birnessites and related phase transformations in laboratory experiments over 12 sequential additions of 0.01 M Tl(I)/Mn at pH 4.0, 6.0, and 8.0. The Tl-reacted Mn oxides were characterized for their structure, Tl binding, and morphology using X-ray diffraction, X-ray photoelectron and X-ray absorption spectroscopies, and transmission electron microscopy. Very limited Tl oxidation was observed in contrast to previous works, where equal Tl(I)/Mn was added in a single step. Instead, both birnessites transformed into a 2 × 2 tunneled phase with dehydrated Tl(I) in its tunnels at pH 4, but only partially at pH 6, and at pH 8.0 they remained layered. The first four to nine sequential Tl(I)/Mn additions resulted in lower residual dissolved Tl+ concentrations than when the same amounts of Tl(I)/Mn were added in single steps. This study thus shows that the repeated reaction of hexagonal birnessites with smaller Tl(I)/Mn at ambient temperature triggers a complete phase conversion with Tl(I) as the sole reacting cation. The novel pathway found may be more relevant for contaminated environments and may help explain the formation of minerals like thalliomelane [Tl+(Mn7.54+Cu0.52+)O16]; it also points to the possibility that other reducing species trigger similar Mn oxide transformation reactions.


Asunto(s)
Óxidos , Talio , Concentración de Iones de Hidrógeno , Oxidación-Reducción
5.
Chimia (Aarau) ; 74(7): 730, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32778205

RESUMEN

Groundwater is a much safer and more dependable source of drinking water than surface water. However, natural (geogenic) hazardous elements can contaminate groundwater and lead to severe health problems in consumers. Arsenic concentrations exceeding the WHO drinking water guideline of 10 µg/L globally affect over 220 million people and can cause arsenicosis (skin lesions and cancers). Fluoride, while preventing caries at low concentrations, has detrimental effects when above the WHO drinking water guideline of 1.5 mg/L and puts several hundred million people at risk of dental and skeletal fluorosis. In this article, we report on the geochemistry and occurrence of arsenic and fluoride in groundwater and on the development of global and regional risk maps that help alert governments and water providers to take appropriate mitigation measures for the provision of safe drinking water. We then summarize research on the removal of arsenic and fluoride from drinking water, focusing on adapted technologies for water treatment. Finally, we discuss the applicability of various measures in a larger context and future challenges in reaching the goal of access to safe drinking water for all.


Asunto(s)
Agua Subterránea , Arsénico , Agua Potable , Monitoreo del Ambiente , Fluoruros , Contaminantes Químicos del Agua
6.
Geochem Trans ; 20(1): 2, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30903325

RESUMEN

Iron(III)-precipitates formed by the oxidation of dissolved Fe(II) are important sorbents for major and trace elements in aquatic and terrestrial systems. Their reductive dissolution in turn may result in the release of associated elements. We examined the reductive dissolution kinetics of an environmentally relevant set of Fe(II)-derived arsenate-containing Fe(III)-precipitates whose structure as function of phosphate (P) and silicate (Si) content varied between poorly-crystalline lepidocrocite, amorphous Fe(III)-phosphate, and Si-containing ferrihydrite. The experiments were performed with 0.2-0.5 mM precipitate-Fe(III) using 10 mM Na-ascorbate as reductant, 5 mM bipyridine as Fe(II)-complexing ligand, and 10 mM MOPS/5 mM NaOH as pH 7.0 buffer. Times required for the dissolution of half of the precipitate (t50%) ranged from 1.5 to 39 h; spanning a factor 25 range. At loadings up to ~ 0.2 P/Fe (molar ratio), phosphate decreased the t50% of Si-free precipitates, probably by reducing the crystallinity of lepidocrocite. The reductive dissolution of Fe(III)-phosphates formed at higher P/Fe ratios was again slower, possibly due to P-inhibited ascorbate binding to precipitate-Fe(III). The slowest reductive dissolution was observed for P-free Si-ferrihydrite with ~ 0.1 Si/Fe, suggesting that silicate binding and polymerization may reduce surface accessibility. The inhibiting effect of Si was reduced by phosphate. Dried-resuspended precipitates dissolved 1.0 to 1.8-times more slowly than precipitates that were kept wet after synthesis, most probably because drying enhanced nanoparticle aggregation. Variations in the reductive dissolution kinetics of Fe(II) oxidation products as reported from this study should be taken into account when addressing the impact of such precipitates on the environmental cycling of co-transformed nutrients and contaminants.

7.
Environ Sci Technol ; 53(22): 13168-13178, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31674774

RESUMEN

The sorption of thallium (Tl) onto manganese (Mn) oxides critically influences its environmental fate and geochemical cycling and is also of interest in water treatment. Combined quantitative and mechanistic understanding of Tl sorption onto Mn oxides, however, is limited. We investigated the uptake of dissolved Tl(I) by environmentally relevant phyllo- and tectomanganates and used X-ray absorption spectroscopy to determine the oxidation state and local coordination of sorbed Tl. We show that extremely strong sorption of Tl onto vacancy-containing layered δ-MnO2 at low dissolved Tl(I) concentrations (log Kd ≥ 7.4 for ≤10-8 M Tl(I); Kd in (L/kg)) is due to oxidative uptake of Tl and that less specific nonoxidative Tl uptake only becomes dominant at very high Tl(I) concentrations (>10-6 M). Partial reduction of δ-MnO2 induces phase changes that result in inhibited oxidative Tl uptake and lower Tl sorption affinity (log Kd 6.2-6.4 at 10-8 M Tl(I)) and capacity. Triclinic birnessite, which features no vacancy sites, and todorokite, a 3 × 3 tectomanganate, bind Tl with lower sorption affinity than δ-MnO2, mainly as hydrated Tl+ in interlayers (triclinic birnessite; log Kd 5.5 at 10-8 M Tl(I)) or tunnels (todorokite). In cryptomelane, a 2 × 2 tectomanganate, dehydrated Tl+ replaces structural K+. The new quantitative and mechanistic insights from this study contribute to an improved understanding of the uptake of Tl by key Mn oxides and its relevance in natural and engineered systems.


Asunto(s)
Compuestos de Manganeso , Talio , Adsorción , Oxidación-Reducción , Óxidos
8.
Environ Sci Technol ; 53(20): 11704-11713, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31425648

RESUMEN

Engineered nanoparticles (NP) discharged to sewers are efficiently retained by wastewater treatment plants and accumulate in the sewage sludge, which is commonly digested. The resulting biosolids are either used as fertilizer or incinerated. In this study, we address the transformation of Cu and Zn during sewage sludge incineration and evaluate whether the form of Cu or Zn (nanoparticulate versus dissolved) added to the digested sewage sludge affects the fate of the metals during incineration. We spiked CuO-NP, dissolved CuSO4, ZnO-NP, or dissolved ZnSO4 into anaerobically digested sewage sludge to reach Cu and Zn concentrations of ≈2500 and ≈3700 mg/kg and maintained the sludge under mesophilic, anaerobic conditions for 24 h. Subsequently, the sludge was incinerated in a pilot fluidized bed reactor. The speciation of Cu and Zn in the sludge, derived from X-ray absorption spectroscopy measurements, was dominated by sulfidic species, with >90% of Cu and >60% of Zn coordinated to reduced sulfur groups. In the ash, both Cu (>60%) and Zn (≈100%) were coordinated to oxygen. The chemical speciation of Cu and Zn in the ashes was independent of whether they were spiked in the dissolved or nanoparticulate form and closely matched the speciation of Cu and Zn observed in ashes from full-scale incinerators.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Fertilizantes , Incineración , Aguas Residuales , Zinc
9.
Environ Sci Technol ; 53(7): 3568-3578, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30758207

RESUMEN

Electron transfer to ferric iron in (oxyhydr-)oxides (hereafter iron oxides) is a critical step in many processes that are central to the biogeochemical cycling of elements and to pollutant dynamics. Understanding these processes requires analytical approaches that allow for characterizing the reactivity of iron oxides toward reduction under controlled thermodynamic boundary conditions. Here, we used mediated electrochemical reduction (MER) to follow changes in iron oxide reduction extents and rates during abiotic ferrous iron-induced transformation of six-line ferrihydrite. Transformation experiments (10 mM ferrihydrite-FeIII) were conducted over a range of solution conditions (pHtrans = 6.50 to 7.50 at 5 mM Fe2+ and for pHtrans = 7.00 also at 1 mM Fe2+) that resulted in the transformation of ferrihydrite into thermodynamically more stable goethite or magnetite. The changes in iron oxide mineralogy during the transformations were quantified using X-ray diffraction analysis. MER measurements on iron oxide suspension aliquots collected during the transformations were performed over a range of pHMER at constant applied reduction potential. The extents and rates of iron oxide reduction in MER decreased with decreasing reaction driving force resulting from both increasing pHMER and increasing transformation of ferrihydrite into thermodynamically more stable iron oxides. We show that the decreases in iron oxide reduction extents and rates during ferrihydrite transformations can be linked to the concurrent changes in iron oxide mineralogy.


Asunto(s)
Compuestos Férricos , Óxido Ferrosoférrico , Compuestos de Hierro , Minerales , Oxidación-Reducción
10.
Environ Sci Technol ; 53(15): 8736-8746, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31339302

RESUMEN

Ferrous iron formed during microbial ferric iron reduction induces phase transformations of poorly crystalline into more crystalline and thermodynamically more stable iron (oxyhydr)oxides. Yet, characterizing the resulting decreases in the reactivity of the remaining oxide ferric iron toward reduction (i.e., its reducibility) has been challenging. Here, we used the reduction of six-line ferrihydrite by Shewanella oneidensis MR-1 as a model system to demonstrate that mediated electrochemical reduction (MER) allows directly following decreases in oxide ferric iron reducibility during the transformation of ferrihydrite into goethite and magnetite which we characterized by X-ray diffraction analysis and transmission electron microscopy imaging. Ferrihydrite was fully reducible in MER at both pHMER of 5.0 and 7.5. Decreases in iron oxide reducibility associated with ferrihydrite transformation into magnetite were accessible at both pHMER because the formed magnetite was not reducible under either of these conditions. Conversely, decreases in iron oxide reducibility associated with goethite formation were apparent only at the highest tested pHMER of 7.5 and thus the thermodynamically least favorable conditions for iron oxide reductive dissolution. The unique capability to adjust the thermodynamic boundary conditions in MER to the specific reducibilities of individual iron (oxyhydr)oxides makes this electrochemical approach broadly applicable for studying changes in iron oxide reducibility in heterogeneous environmental samples such as soils and sediments.


Asunto(s)
Compuestos Férricos , Oxidación-Reducción , Solubilidad
11.
Environ Sci Technol ; 52(2): 571-580, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29286655

RESUMEN

We investigated the adsorption of Tl+ onto purified Illite du Puy (IdP). Distribution coefficients (Kd) for trace Tl adsorption indicated a moderate pH-dependence from pH 2.5 to 11. Adsorption isotherms measured at Tl+ concentrations from 10-9 to 10-2 M at near-neutral pH on illite saturated with Na+ (100 mM), K+ (1 and 10 mM), NH4+ (10 mM) or Ca2+ (5 mM) revealed a high adsorption affinity of Tl+ in Na+- and Ca2+-electrolytes and strong competition with K+ and NH4+. Cation exchange selectivity coefficients for Tl+ with respect to Na+, K+, NH4+, and Ca2+ were derived using a 3-site sorption model. They confirmed the strong adsorption of Tl+ at the frayed edges of illite, with Tl selectivity coefficients between those reported for Rb+ and Cs+. X-ray absorption spectra of Tl adsorbed onto Na-exchanged IdP indicated a shift from adsorption of (dehydrated) Tl+ at the frayed edges at low loadings to adsorption of (hydrated) Tl+ on planar sites at the highest loadings. Our results suggest that illite is an important adsorbent for Tl in soils and sediments, considering its often high abundance and its stability relative to other potential adsorbents and the selective nature of Tl+ uptake by illite.


Asunto(s)
Minerales , Talio , Adsorción , Suelo
12.
Environ Sci Technol ; 52(2): 560-570, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29200267

RESUMEN

Iron (oxyhydr-)oxide reduction has been extensively studied because of its importance in pollutant redox dynamics and biogeochemical processes. Yet, experimental studies linking oxide reduction kinetics to thermodynamics remain scarce. Here, we used mediated electrochemical reduction (MER) to directly quantify the extents and rates of ferrihydrite, goethite, and hematite reduction over a range of negative reaction free energies, ΔrG, that were obtained by systematically varying pH (5.0 to 8.0), applied reduction potentials (-0.53 to -0.17 V vs SHE), and Fe2+ concentrations (up to 40 µM). Ferrihydrite reduction was complete and fast at all tested ΔrG values, consistent with its comparatively low thermodynamic stability. Reduction of the thermodynamically more stable goethite and hematite changed from complete and fast to incomplete and slow as ΔrG values became less negative. Reductions at intermediate ΔrG values showed negative linear correlations between the natural logarithm of the reduction rate constants and ΔrG. These correlations imply that thermodynamics controlled goethite and hematite reduction rates. Beyond allowing to study iron oxide reduction under defined thermodynamic conditions, MER can also be used to capture changes in iron oxide reducibility during phase transformations, as shown for Fe2+-facilitated transformation of ferrihydrite to goethite.


Asunto(s)
Compuestos de Hierro , Hierro , Compuestos Férricos , Cinética , Minerales , Oxidación-Reducción , Óxidos , Termodinámica
13.
Environ Sci Technol ; 51(19): 10943-10953, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28671459

RESUMEN

The number and quantities of trace elements used in industry, (high-tech) consumer products, and medicine are rapidly increasing, but the resulting emissions and waste streams are largely unknown. We assessed the concentrations of 69 elements in digested sewage sludge and effluent samples from 64 municipal wastewater treatment plants as well as in major rivers in Switzerland. This data set, representative of an entire industrialized country, presents a reference point for current element concentrations, average per-capita fluxes, loads discharged to surface waters, and economic waste-stream values. The spatial distribution of many individual elements could be attributed either to predominant geogenic or to anthropogenic inputs. Per-capita element fluxes ranged from <10 µg day-1 (e.g., Au, In, and Lu) to >1 mg day-1 (e.g., Zn, Sc, Y, Nb, and Gd) and >1 g day-1 (e.g., for P, Fe, and S). Effluent loads of some elements contributed significantly to riverine budgets (e.g., 24% for Zn, 50% for P, and 83% for Gd), indicating large anthropogenic inputs via the wastewater stream. At various locations, precious metal concentrations in sludge were similar to those in profitable mining ores, with total flux values of up to 6.8 USD per capita per year or 15 USD per metric ton of dry sludge.


Asunto(s)
Metales/análisis , Aguas del Alcantarillado/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Minería , Ríos , Encuestas y Cuestionarios , Suiza , Oligoelementos
14.
Environ Sci Technol ; 50(2): 711-20, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26690834

RESUMEN

Biogenic selenium (Se) emissions play a major role in the biogeochemical cycle of this essential micronutrient. Microalgae may be responsible for a large portion of these emissions via production of methylated Se compounds that volatilize into the atmosphere. However, the biochemical mechanisms underlying Se methylation in microalgae are poorly understood. Here, we study Se methylation by Chlamydomonas reinhardtii, a model freshwater alga, as a function of uptake and intracellular Se concentrations and present a biochemical model that quantitatively describes Se uptake and methylation. Both selenite and selenate, two major inorganic forms of Se, are readily internalized by C. reinhardtii, but selenite is accumulated around ten times more efficiently than selenate due to different membrane transporters. With either selenite or selenate as substrates, Se methylation was highly efficient (up to 89% of intracellular Se) and directly coupled to intracellular Se levels (R(2) > 0.92) over an intracellular concentration range exceeding an order of magnitude. At intracellular concentrations exceeding 10 mM, intracellular zerovalent Se was formed. The relationship between uptake, intracellular accumulation, and methylation was used by the biochemical model to successfully predict measured concentrations of methylated Se in natural waters. Therefore, biological Se methylation by microalgae could significantly contribute to environmental Se cycling.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Modelos Biológicos , Selenio/metabolismo , Fenómenos Ecológicos y Ambientales , Inactivación Metabólica , Metilación , Microalgas/metabolismo , Ácido Selénico/metabolismo , Ácido Selenioso/metabolismo , Azufre/metabolismo
15.
Environ Sci Technol ; 50(7): 3503-10, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26840361

RESUMEN

Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of <50 nm extending into the sub-nm range was revealed by electron microscopy analyses. The rapid formation of Ag(0)-NP from Ag2S during sewage sludge incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.


Asunto(s)
Incineración , Nanopartículas del Metal/química , Aguas del Alcantarillado/química , Plata/química , Nanopartículas del Metal/ultraestructura , Análisis de Componente Principal , Aguas Residuales/química , Espectroscopía de Absorción de Rayos X
17.
Environ Sci Technol ; 49(18): 10911-9, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26270654

RESUMEN

Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.


Asunto(s)
Ozono/química , Compuestos de Plata/química , Aguas Residuales/química , Chlamydomonas reinhardtii/efectos de los fármacos , Chlorophyta , Microscopía Electrónica de Transmisión , Nanopartículas/química , Oxidación-Reducción , Plata/química , Compuestos de Plata/toxicidad , Sulfuros/química , Pruebas de Toxicidad/métodos , Aguas Residuales/toxicidad , Espectroscopía de Absorción de Rayos X
18.
Environ Sci Technol ; 49(9): 5390-8, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25885948

RESUMEN

We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (µ-XRF) and X-ray absorption spectroscopy (µ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.


Asunto(s)
Arsénico/análisis , Carbonatos/análisis , Sedimentos Geológicos/química , Minerales/química , Contaminantes del Suelo/análisis , Suelo/química , Talio/análisis , Ácidos/química , Contaminación Ambiental/análisis , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Oxalatos/química , Espectrometría por Rayos X , Sulfatos/química , Suiza , Espectroscopía de Absorción de Rayos X
19.
Environ Sci Technol ; 48(9): 4885-92, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24678586

RESUMEN

Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides.


Asunto(s)
Compuestos de Cadmio/química , Nanopartículas del Metal/química , Plata/química , Sulfuros/química , Compuestos de Zinc/química , Cinética , Oxígeno/química , Solubilidad , Aguas Residuales/química , Espectroscopía de Absorción de Rayos X , Difracción de Rayos X
20.
Environ Sci Technol ; 48(8): 4307-16, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24601526

RESUMEN

Colloids may facilitate the transport of trace elements and nutrients like phosphate in soil. In this study, we characterized soil colloids (<0.45 µm), extracted from four agricultural soils by Na-bicarbonate and Na-pyrophosphate, by two complementary analytical techniques; asymmetric flow field-flow fractionation (AF4) and X-ray absorption spectroscopy (XAS). The combined results from AF4 and XAS show that colloidal Fe is present as (i) free Fe-(hydr)oxide nanoparticles, (ii) Fe-(hydr)oxides associated with clay minerals, and (iii) Fe in clay minerals. Free Fe-(hydr)oxide nanoparticles, which can be as small as 2-5 nm, are extracted with Na-pyrophosphate but not with Na-bicarbonate, except for one soil. In contrast, Fe-(hydr)oxides associated with clay minerals are dispersed by both extractants. XAS results show that the speciation of Fe in the colloidal fractions closely resembles the speciation of Fe in the bulk soil, indicating that dispersion of colloidal Fe from the studied soils was rather unselective. In one Fe-rich soil, colloidal Fe was dominantly dispersed in the form of free Fe-(hydr)oxide nanoparticles. In the other three soils, dispersed Fe-(hydr)oxides were dominantly associated with clay minerals, suggesting that their dispersion as free nanoparticles was inhibited by strong attachment. However, in these soils, Fe-(hydr)oxides can be dispersed as oxide-clay associations and may as such facilitate the transport of trace elements.


Asunto(s)
Fraccionamiento de Campo-Flujo/métodos , Hierro/análisis , Suelo/química , Espectroscopía de Absorción de Rayos X/métodos , Carbono/análisis , Coloides , Ditionita/química , Hidróxidos/química , Nanopartículas/análisis , Oxalatos/química , Fosfatos/análisis , Contaminantes del Suelo/análisis , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA