Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(29): 10456-61, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002464

RESUMEN

Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms.

2.
J Appl Crystallogr ; 56(Pt 4): 1277-1286, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555231

RESUMEN

Modern diffraction experiments (e.g. in situ parametric studies) present scientists with many diffraction patterns to analyze. Interactive analyses via graphical user interfaces tend to slow down obtaining quantitative results such as lattice parameters and phase fractions. Furthermore, Rietveld refinement strategies (i.e. the parameter turn-on-off sequences) tend to be instrument specific or even specific to a given dataset, such that selection of strategies can become a bottleneck for efficient data analysis. Managing multi-histogram datasets such as from multi-bank neutron diffractometers or caked 2D synchrotron data presents additional challenges due to the large number of histogram-specific parameters. To overcome these challenges in the Rietveld software Material Analysis Using Diffraction (MAUD), the MAUD Interface Language Kit (MILK) is developed along with an updated text batch interface for MAUD. The open-source software MILK is computer-platform independent and is packaged as a Python library that interfaces with MAUD. Using MILK, model selection (e.g. various texture or peak-broadening models), Rietveld parameter manipulation and distributed parallel batch computing can be performed through a high-level Python interface. A high-level interface enables analysis workflows to be easily programmed, shared and applied to large datasets, and external tools to be integrated with MAUD. Through modification to the MAUD batch interface, plot and data exports have been improved. The resulting hierarchical folders from Rietveld refinements with MILK are compatible with Cinema: Debye-Scherrer, a tool for visualizing and inspecting the results of multi-parameter analyses of large quantities of diffraction data. In this manuscript, the combined Python scripting and visualization capability of MILK is demonstrated with a quantitative texture and phase analysis of data collected at the HIPPO neutron diffractometer.

3.
Sci Rep ; 13(1): 14424, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660169

RESUMEN

Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.


Asunto(s)
Micorrizas , Pinus , Micorrizas/genética , Genotipo , Fenotipo , Transporte Biológico
4.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171234

RESUMEN

The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complement the First Target Station's beamline capabilities by offering an increased flux for cold neutrons and a broader wavelength bandwidth. A novel neutron imaging beamline, named the Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D), is among the first eight instruments that will be commissioned at STS as part of the construction project. CUPI2D is designed for a broad range of neutron imaging scientific applications, such as energy storage and conversion (batteries and fuel cells), materials science and engineering (additive manufacturing, superalloys, and archaeometry), nuclear materials (novel cladding materials, nuclear fuel, and moderators), cementitious materials, biology/medical/dental applications (regenerative medicine and cancer), and life sciences (plant-soil interactions and nutrient dynamics). The innovation of this instrument lies in the utilization of a high flux of wavelength-separated cold neutrons to perform real time in situ neutron grating interferometry and Bragg edge imaging-with a wavelength resolution of δλ/λ ≈ 0.3%-simultaneously when required, across a broad range of length and time scales. This manuscript briefly describes the science enabled at CUPI2D based on its unique capabilities. The preliminary beamline performance, a design concept, and future development requirements are also presented.

5.
Nat Commun ; 13(1): 1173, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246525

RESUMEN

Neutrons are a valuable tool for non-destructive material investigation as their interaction cross sections with matter are isotope sensitive and can be used complementary to x-rays. So far, most neutron applications have been limited to large-scale facilities such as nuclear research reactors, spallation sources, and accelerator-driven neutron sources. Here we show the design and optimization of a laser-driven neutron source in the epi-thermal and thermal energy range, which is used for non-invasive material analysis. Neutron resonance spectroscopy, neutron radiography, and neutron resonance imaging with moderated neutrons are demonstrated for investigating samples in terms of isotope composition and thickness. The experimental results encourage applications in non-destructive and isotope-sensitive material analysis and pave the way for compact laser-driven neutron sources with high application potential.

6.
J Imaging ; 7(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34460684

RESUMEN

With an increased interest in the use of molten salts in both nuclear and non-nuclear systems, measuring important thermophysical properties of specific salt mixtures becomes critical in understanding salt performance and behavior. One of the more basic and significant thermophysical properties of a given salt system is density as a function of temperature. With this in mind, this work aims to present and layout a novel approach to measuring densities of molten salt systems using neutron radiography. This work was performed on Flight Path 5 at the Los Alamos Neutron Science Center at Los Alamos National Laboratory. In order to benchmark this initial work, three salt mixtures were measured, NaCl, LiCl (58.2 mol%) + KCl (41.8 mol%), and MgCl2 (32 mol%) + KCl (68 mol%). Resulting densities as a function of temperature for each sample from this work were then compared to previous works employing traditional techniques. Results from this work match well with previous literature values for all salt mixtures measured, establishing that neutron radiography is a viable technique to measure density as a function of temperature in molten salt systems. Finally, advantages of using neutron radiography over other methods are discussed and future work in improving this technique is covered.

7.
Addit Manuf ; 462021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36873560

RESUMEN

Metal additive manufacturing (AM) enables customizable, on-demand parts, allowing for new designs and improved engineering performance. Yet, the ability to control AM metal alloy microstructures (i.e., grain morphology, crystallographic texture, and phase content) is lacking. This work performs corroborative neutron diffraction and large-scale electron backscatter diffraction (EBSD) measurements to assess crystallographic texture in electron beam melted (EBM) Ti-6Al-4V as a function of scan strategy and build height. Texture components for one raster and two spot melt scan strategies were evaluated using a triclinic specimen symmetry to capture all possible texture components, which were found to be considerably different than previously reported values from studies employing orthotropic specimen symmetry. This finding highlights the importance of a standard method and best practice for assessing textures produced by AM. Texture was found to vary between scan strategies, but changed minimally as a function of build height. Parent phase ß-Ti reconstructions obtained from as-built crystallographic orientations revealed spot melt scan strategies produced finer equiaxed/columnar grains with clear 001 ß build direction fiber textures, whereas the raster scan strategy produced large columnar grains and a weaker 001 ß build direction fiber texture. The observed grain morphologies agree with those predicted by solidification theory for the thermal gradients and solidification velocities experienced during the build process. The presence of a strong 001 ß fiber orientation (typical of cubic solidification) produced by spot melting was found to correlate with a previously unreported 01 1 ¯ 2 α fiber texture in the as-built condition and colony microstructures. The 01 1 ¯ 2 α fiber texture was weakly observed for the raster scan strategy, and 001 ß oriented grains preferentially transformed into α' martensite with orientations between 1 1 ¯ 00 α and 11 2 ¯ 0 α . This shift in product α-Ti orientations has not yet been reported, and further work is recommended to understand these crystallographic signatures in the context of solid-state phase transformations. The presence of the 01 1 ¯ 2 α fiber texture is proposed as a useful diagnostic for evaluating the solidification or transformed microstructure condition (e.g., grain morphology and texture) of Ti-6Al-4V AM builds via accessible techniques like laboratory X-ray diffraction.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36936346

RESUMEN

This work presents a detailed instructional demonstration using the Rietveld refinement software MAUD for evaluating the crystallographic texture of single- and dual-phase materials, as applied to High-Pressure-Preferred-Orientation (HIPPO) neutron diffraction data obtained at Los Alamos National Laboratory (LANL) and electron backscatter diffraction (EBSD) pole figures on Ti-6Al-4V produced by additive manufacturing. This work addresses a number of hidden challenges intrinsic to Rietveld refinement and operation of the software to improve users' experiences when using MAUD. A systematic evaluation of each step in the MAUD refinement process is described, focusing on devising a consistent refinement process for any version of MAUD and any material system, while also calling out required updates to previously developed processes. A number of possible issues users may encounter are documented and explained, along with a multilayered assessment for validating when a MAUD refinement procedure is finished for any dataset. A brief discussion on appropriate sample symmetries is also included to highlight possible oversimplifications of the texture data extracted from MAUD. Included in the appendix of this work are two systematic walkthroughs applying the process described. Files for these walkthroughs can be found at the data repository located at: https://doi.org/10.18434/mds2-2400.

9.
Materials (Basel) ; 14(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572598

RESUMEN

Additively-manufactured Ti-6Al-4V (Ti64) exhibits high strength but in some cases inferior elongation to those of conventionally manufactured materials. Post-processing of additively manufactured Ti64 components is investigated to modify the mechanical properties for specific applications while still utilizing the benefits of the additive manufacturing process. The mechanical properties and fatigue resistance of Ti64 samples made by electron beam melting were tested in the as-built state. Several heat treatments (up to 1000 °C) were performed to study their effect on the microstructure and mechanical properties. Phase content during heating was tested with high reliability by neutron diffraction at Los Alamos National Laboratory. Two different hot isostatic pressings (HIP) cycles were tested, one at low temperature (780 °C), the other is at the standard temperature (920 °C). The results show that lowering the HIP holding temperature retains the fine microstructure (~1% ß phase) and the 0.2% proof stress of the as-built samples (1038 MPa), but gives rise to higher elongation (~14%) and better fatigue life. The material subjected to a higher HIP temperature had a coarser microstructure, more residual ß phase (~2% difference), displayed slightly lower Vickers hardness (~15 HV10N), 0.2% proof stress (~60 MPa) and ultimate stresses (~40 MPa) than the material HIP'ed at 780 °C, but had superior elongation (~6%) and fatigue resistance. Heat treatment at 1000 °C entirely altered the microstructure (~7% ß phase), yield elongation of 13.7% but decrease the 0.2% proof-stress to 927 MPa. The results of the HIP at 780 °C imply it would be beneficial to lower the standard ASTM HIP temperature for Ti6Al4V additively manufactured by electron beam melting.

10.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 11): 1716-1719, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33209339

RESUMEN

The title compound, thallium magnesium trichloride, has been identified as a scintillator with both moderate gamma-stopping power and moderate light yield. Knowledge of its crystal structure is needed for further development. This work determines the crystal structure of TlMgCl3 to be hexa-gonal P63/mmc (No. 194) and isostructural with RbMgCl3, contrary to previously reported data. This structure was obtained by single-crystal X-ray diffraction and was further confirmed by neutron diffraction measurements. Extending neutron diffraction measurements to high temperature, the data show that TlMgCl3 maintains this crystal structure from 290 K up through 725 K, approaching the melting point of 770 K. Anisotropic thermal expansion coefficients increase over this temperature range, from 31 to 38 × 10-6 K-1 along the a axis and from 19 to 34 × 10-6 K-1 along the c axis.

11.
J Appl Crystallogr ; 53(Pt 2): 540-548, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32280326

RESUMEN

Knowledge of the appearance of texture components and fibres in pole figures, in inverse pole figures and in Euler space is fundamental for texture analysis. For cubic crystal systems, such as steels, an extensive literature exists and, for example, the book by Matthies, Vinel & Helming [Standard Distributions in Texture Analysis: Maps for the Case of Cubic Orthorhomic Symmetry, (1987), Akademie-Verlag Berlin] provides an atlas to identify texture components. For lower crystal symmetries, however, equivalent comprehensive overviews that can serve as guidance for the interpretation of experimental textures do not exist. This paper closes this gap by providing a set of scripts for the MTEX package [Bachmann, Hielscher & Schaeben (2010). Solid State Phenom. 160, 63-68] that allow the texture practitioner to compile such an atlas for a given material system, thus aiding orientation distribution function analysis also for non-cubic systems.

12.
Anat Rec (Hoboken) ; 303(4): 1043-1059, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31967416

RESUMEN

Tyrannosaurus rex and other tyrannosaurid dinosaurs were apex predators during the latest Cretaceous, which combined giant size and advanced neurosensory systems. Computed tomography (CT) data have shown that tyrannosaurids had a trademark system of a large brain, large olfactory bulbs, elongate cochlear ducts, and expansive endocranial sinuses surrounding the brain and sense organs. Older, smaller tyrannosauroid relatives of tyrannosaurids developed some, but not all, of these features, raising the hypothesis that tyrannosaurid-style brains evolved before the enlarged tyrannosaurid-style sinuses, which might have developed only with large body size. This has been difficult to test, however, because little is known about the brains and sinuses of the first large-bodied tyrannosauroids, which evolved prior to Tyrannosauridae. We here present the first CT data for one of these species, Bistahieversor sealeyi from New Mexico. Bistahieversor had a nearly identical brain and sinus system as tyrannosaurids like Tyrannosaurus, including a large brain, large olfactory bulbs, reduced cerebral hemispheres, and optic lobes, a small tab-like flocculus, long and straight cochlear ducts, and voluminous sinuses that include a supraocciptal recess, subcondyar sinus, and an anterior tympanic recess that exits the braincase via a prootic fossa. When characters are plotted onto tyrannosauroid phylogeny, there is a two-stage sequence in which features of the tyrannosaurid-style brain evolved first (in smaller, nontyrannosaurid species like Timurlengia), followed by features of the tyrannosaurid-style sinuses (in the first large-bodied nontyrannosaurid tyrannosauroids like Bistahieversor). This suggests that the signature tyrannosaurid sinus system evolved in concert with large size, whereas the brain did not. Anat Rec, 303:1043-1059, 2020. © 2020 American Association for Anatomy.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Dinosaurios/anatomía & histología , Cráneo/anatomía & histología , Animales , Fósiles , Filogenia , Cráneo/diagnóstico por imagen
13.
J Appl Crystallogr ; 51(Pt 3): 943-951, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29896062

RESUMEN

A tool named Cinema:Debye-Scherrer to visualize the results of a series of Rietveld analyses is presented. The multi-axis visualization of the high-dimensional data sets resulting from powder diffraction analyses allows identification of analysis problems, prediction of suitable starting values, identification of gaps in the experimental parameter space and acceleration of scientific insight from the experimental data. The tool is demonstrated with analysis results from 59 U-Nb alloy samples with different compositions, annealing times and annealing temperatures as well as with a high-temperature study of the crystal structure of CsPbBr3. A script to extract parameters from a series of Rietveld analyses employing the widely used GSAS Rietveld software is also described. Both software tools are available for download.

14.
J Appl Crystallogr ; 51(Pt 3): 746-760, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29896060

RESUMEN

Neutron diffraction texture measurements provide bulk averaged textures with excellent grain orientation statistics, even for large-grained materials, owing to the probed volume being of the order of 1 cm3. Furthermore, crystallographic parameters and other valuable microstructure information such as phase fraction, coherent crystallite size, root-mean-square microstrain, macroscopic or intergranular strain and stress, etc. can be derived from neutron diffractograms. A procedure for combined high stereographic resolution texture and residual stress evaluation was established on the pulsed-neutron-source-based engineering materials diffractometer TAKUMI at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Center, through division of the neutron detector panel regions. Pole figure evaluation of a limestone standard sample with a well known texture suggested that the precision obtained for texture measurement is comparable to that of the established neutron beamlines utilized for texture measurement, such as the HIPPO diffractometer at the Los Alamos Neutron Science Center (New Mexico, USA) and the D20 angle-dispersive neutron diffractometer at the Institut Laue-Langevin (Grenoble, France). A high-strength martensite-austenite multilayered steel was employed for further verification of the reliability of simultaneous Rietveld analysis of multiphase textures and macro stress tensors. By using a texture-weighted geometric mean micromechanical (BulkPathGEO) model, a macro stress tensor analysis with a plane stress assumption showed a rolling direction-transverse direction (RD-TD) in-plane compressive stress (about -330 MPa) in the martensite layers and an RD-TD in-plane tensile stress (about 320 MPa) in the austenite layers. The phase stress partitioning was ascribed mainly to the additive effect of the volume expansion during martensite transformation and the linear contraction misfit between austenite layers and newly transformed martensite layers during the water quenching process.

15.
J Phys Chem B ; 111(50): 13873-6, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18031032

RESUMEN

We have investigated pressure-induced structural transitions in NaBH4 through density-functional theory calculations combined with X-ray and neutron diffraction experiments. Our calculations confirm that the cubic phase is stable up to 5.4 GPa and an orthorhombic phase occurs above 8.9 GPa, as observed in X-ray diffraction experiments. Both the calculations and X-ray diffraction measurements identify an intermediate tetragonal phase that appears between 6 and 8 GPa; that is, between the cubic and orthorhombic phases. This result is also confirmed by high-pressure neutron diffraction experiments performed on NaBD4. Our calculations and X-ray diffraction measurements show that the space group of the orthorhombic phase above 8.9 GPa is Pnma and the orthorhombic phase remains stable up to 30 GPa. The calculated equations of state are in excellent agreement with experiments.

16.
Sci Rep ; 7: 40759, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102285

RESUMEN

Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5-10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 µm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity.

17.
Sci Rep ; 7: 46275, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425461

RESUMEN

Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 µm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.

18.
Phys Plasmas ; 24(5): 056702, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28652684

RESUMEN

Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 µm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.

19.
Front Plant Sci ; 7: 564, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200037

RESUMEN

Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.

20.
J Appl Crystallogr ; 49(Pt 3): 743-755, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27275133

RESUMEN

Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA