Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Respir J ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38901883

RESUMEN

BACKGROUND: We recently demonstrated that elexacaftor/tezacaftor/ivacaftor (ETI) improves the lung clearance index (LCI) and abnormalities in lung morphology detected by magnetic resonance imaging (MRI) in adolescent and adult patients with cystic fibrosis (CF). However, real-world data on the effect of ETI on these sensitive outcomes of lung structure and function in school-age children with CF have not been reported. The aim of this study was therefore to examine the effect of ETI on the LCI and the lung MRI score in children with CF and one or two F508del alleles aged 6 to 11 years. METHODS: This prospective, observational, multicenter, post-approval study assessed the longitudinal LCI up to 12 months and the lung MRI score before and three months after initiation of ETI. RESULTS: A total of 107 children with CF including 40 heterozygous for F508del and a minimal function mutation (F/MF) and 67 homozygous for F508del (F/F) were enrolled in this study. Treatment with ETI improved the LCI in F/MF children (-1.0; IQR, -2.0 to -0.1; p<0.01) and F/F children (-0.8; IQR, -1.9 to -0.2; p<0.001) from 3 months onwards. Further, ETI improved the MRI global score in F/MF (-4.0; IQR, -9.0 to 0.0; p<0.01) and F/F children (-3.5; IQR, -7.3 to -0.8; p<0.001). CONCLUSIONS: ETI improves early abnormalities in lung ventilation and morphology in school-age children with CF and at least one F508del alleles in a real-world setting. Our results support early initiation of ETI to reduce or even prevent lung disease progression in school-age children with CF.

2.
Magn Reson Med ; 91(5): 2142-2152, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38217450

RESUMEN

PURPOSE: Various parameters of regional lung ventilation can be estimated using phase-resolved functional lung (PREFUL)-MRI. The parameter "ventilation correlation coefficient (Vent-CC)" was shown advantageous because it assesses the dynamics of regional air flow. Calculating Vent-CC depends on a voxel-wise comparison to a healthy reference flow curve. This work examines the effect of placing a reference region of interest (ROI) in various lung quadrants or in different coronal slices. Furthermore, algorithms for automated ROI selection are presented and compared in terms of test-retest repeatability. METHODS: Twenty-eight healthy subjects and 32 chronic obstructive pulmonary disease (COPD) patients were scanned twice using PREFUL-MRI. Retrospective analyses examined the homogeneity of air flow curves of various reference ROIs using cross-correlation. Vent-CC and ventilation defect percentage (VDP) calculated using various reference ROIs were compared using one-way analysis of variance (ANOVA). The coefficient of variation was calculated for Vent-CC and VDP when using different reference selection algorithms. RESULTS: Flow-volume curves were highly correlated between ROIs placed at various lung quadrants in the same coronal slice (r > 0.97) with no differences in Vent-CC and VDP (ANOVA: p > 0.5). However, ROIs placed at different coronal slices showed lower correlation coefficients and resulted in significantly different Vent-CC and VDP values (ANOVA: p < 0.001). Vent-CC and VDP showed higher repeatability when calculated using the presented new algorithm. CONCLUSION: In COPD and healthy cohorts, assessing regional ventilation dynamics using PREFUL-MRI in terms of the Vent-CC metric showed higher repeatability using a new algorithm for selecting a homogenous reference ROI from the same slice.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Estudios Retrospectivos , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Respiración , Imagen por Resonancia Magnética/métodos , Ventilación Pulmonar
3.
NMR Biomed ; : e5209, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994704

RESUMEN

Phase-resolved functional lung (PREFUL) MRI is a proton-based, contrast agent-free technique derived from the Fourier decomposition approach to measure regional ventilation and perfusion dynamics during free-breathing. Besides the necessity of extensive PREFUL postprocessing, the utilized MRI sequence must fulfill specific requirements. This study investigates the impact of sequence selection on PREFUL-MRI-derived functional parameters by comparing the standard spoiled gradient echo (SPGRE) sequence with a lung-optimized balanced steady-state free precession (bSSFP) sequence, thereby facilitating PREFULs clinical application in pulmonary disease assessment. This study comprised a prospective dataset of healthy volunteers and a retrospective dataset of patients with suspected chronic thromboembolic pulmonary hypertension. Both cohorts underwent PREFUL-MRI with both sequences to assess the correspondence of PREFUL ventilation and perfusion parameters (A). Additionally, healthy subjects were scanned a second time to evaluate repeatability (B), whereas patients received dynamic contrast-enhanced (DCE)-MRI, considered the perfusion gold standard for comparison with PREFUL-MRI (C). Signal-to-noise ratio (SNR), calculated from the unprocessed images, was compared alongside median differences of PREFUL-MRI-derived parameters using a paired Wilcoxon signed rank test. Further evaluations included calculation of the Pearson correlation, intraclass-correlation coefficient for repeatability assessment, and spatial overlap (SO) for regional comparison of PREFUL-MRI and DCE-MRI. bSSFP showed a clear SNR advantage over SPGRE (median: 23 vs. 9, p < 0.001). (A) Despite significant differences, parameter values were strongly correlated (r ≥ 0.75). After thresholding, binary maps showed high healthy overlap across both cohorts (SOHealthy > 86%) and high defect overlap in the patient cohort (SODefect ≥ 48%). (B) bSSFP demonstrated slightly higher repeatability across most parameters. (C) Both sequences demonstrated comparable correspondence to DCE-MRI, with SPGRE excelling in absolute quantification and bSSFP in spatial agreement. Although bSSFP showed superior SNR results, both sequences displayed spatial defect concordance and highly correlated PREFUL parameters with deviations regarding repeatability and alignment with DCE-MRI.

4.
J Magn Reson Imaging ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38887850

RESUMEN

BACKGROUND: Pulmonary perfusion defects have been observed in patients with coronavirus disease 2019 (COVID-19). Currently, there is a need for further data on non-contrast-enhanced MRI in COVID patients. The early identification of heterogeneity in pulmonary perfusion defects among COVID-19 patients is beneficial for their timely clinical intervention and management. PURPOSE: To investigate the utility of phase-resolved functional lung (PREFUL) MRI in detecting pulmonary perfusion disturbances in individuals with postacute COVID-19 syndrome (PACS). STUDY TYPE: Prospective. SUBJECTS: Forty-four participants (19 females, mean age 64.1 years) with PACS and 44 healthy subjects (19 females, mean age 59.5 years). Moreover, among the 44 patients, there were 19 inpatients and 25 outpatients; 19 were female and 25 were male; 18 with non-dyspnea and 26 with dyspnea. FIELD STRENGTH/SEQUENCE: 3-T, two-dimensional (2D) spoiled gradient-echo sequence. ASSESSMENT: Ventilation and perfusion-weighted maps were extracted from five coronal slices using PREFUL analysis. Subsequently, perfusion defect percentage (QDP), ventilation defect percentage (VDP), and ventilation-perfusion match healthy (VQM) were calculated based on segmented lung parenchyma ventilation and perfusion-weighted maps. Additionally, clinical features, including demographic data (such as sex and age) and serum biomarkers (such as D-dimer levels), were evaluated. STATISTICAL TESTS: Spearman correlation coefficients to explore relationships between clinical features and QDP, VDP, and VQM. Propensity score matching analysis to reduce the confounding bias between patients with PACS and healthy controls. The Mann-Whitney U tests and Chi-squared tests to detect differences between groups. Multivariable linear regression analyses to identify factors related to QDP, VDP, and VQM. A P-value <0.05 was considered statistically significant. RESULTS: QDP significantly exceeded that of healthy controls in individuals with PACS (39.8% ± 15.0% vs. 11.0% ± 4.9%) and was significantly higher in inpatients than in outpatients (46.8% ± 17.0% vs. 34.5% ± 10.8%). Moreover, males exhibited pulmonary perfusion defects significantly more frequently than females (43.9% ± 16.8% vs. 34.4% ± 10.2%), and dyspneic participants displayed significantly higher perfusion defects than non-dyspneic patients (44.8% ± 15.8% vs. 32.6% ± 10.3%). QDP showed a significant positive relationship with age (ß = 0.50) and D-dimer level (ß = 0.72). DATA CONCLUSION: PREFUL MRI may show pulmonary perfusion defects in patients with PACS. Furthermore, perfusion impairments may be more pronounced in males, inpatients, and dyspneic patients. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

5.
J Magn Reson Imaging ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214459

RESUMEN

BACKGROUND: Non-contrast-enhanced 1 H magnetic resonance imaging (MRI) with full lung coverage shows promise for assessment of regional lung ventilation but a comparison with direct ventilation measurement using 19 F MRI is lacking. PURPOSE: To compare ventilation parameters calculated using 3D phase-resolved functional lung (PREFUL) MRI with 19 F MRI. STUDY TYPE: Prospective. POPULATION: Fifteen patients with asthma, 14 patients with chronic obstructive lung disease, and 13 healthy volunteers. FIELD STRENGTH/SEQUENCE: A 3D gradient-echo pulse sequence with golden-angle increment and stack-of-stars encoding at 1.5 T. ASSESSMENT: All participants underwent 3D PREFUL MRI and 19 F MRI. For 3D PREFUL, static regional ventilation (RVent) and dynamic flow-volume cross-correlation metric (FVL-CM) were calculated. For both parameters, ventilation defect percentage (VDP) values and ventilation defect (VD) maps (including a combination of both parameters [VDPCombined ]) were determined. For 19 F MRI, images from eight consecutive breaths under volume-controlled inhalation of perfluoropropane were acquired. Time-to-fill (TTF) and wash-in (WI) parameters were extracted. For all 19 F parameters, a VD map was generated and the corresponding VDP values were calculated. STATISTICAL TESTS: For all parameters, the relationship between the two techniques was assessed using a Spearman correlation (r). Differences between VDP values were compared using Bland-Altman analysis. For regional comparison of VD maps, spatial overlap and Sørensen-Dice coefficients were computed. RESULTS: 3D PREFUL VDP values were significantly correlated to VDP measures by 19 F (r range: 0.59-0.70). For VDPRVent , no significant bias was observed with VDP of the third and fourth breath (bias range = -6.8:7.7%, P range = 0.25:0.30). For VDPFVL-CM , no significant bias was found with VDP values of fourth-eighth breaths (bias range = -2.0:12.5%, P range = 0.12:0.75). The overall spatial overlap of all VD maps increased with each breath, ranging from 61% to 81%, stabilizing at the fourth breath. DATA CONCLUSION: 3D PREFUL MRI parameters showed moderate to strong correlation with 19 F MRI. Depending on the 3D PREFUL VD map, the best regional agreement was found to 19 F VD maps of third-fifth breath. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

6.
J Magn Reson Imaging ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460124

RESUMEN

BACKGROUND: Pulse wave velocity (PWV) in the pulmonary arteries (PA) is a marker of vascular stiffening. Currently, only phase-contrast (PC) MRI-based options exist to measure PA-PWV. PURPOSE: To test feasibility, repeatability, and correlation to clinical data of Phase-Resolved Functional Lung (PREFUL) MRI-based calculation of PA-PWV. STUDY TYPE: Retrospective. SUBJECTS: 79 (26 female) healthy subjects (age range 19-78), 58 (24 female) patients with chronic obstructive pulmonary disease (COPD, age range 40-77), 60 (33 female) patients with suspected pulmonary hypertension (PH, age range 28-85). SEQUENCE: 2D spoiled gradient echo, 1.5T. ASSESSMENT: PA-PWV was measured from PREFUL-derived cardiac cycles based on the determination of temporal and spatial distance between lung vasculature voxels using a simplified (sPWV) method and a more comprehensive (cPWV) method including more elaborate distance calculation. For 135 individuals, PC MRI-based PWV (PWV-QA) was measured. STATISTICAL TESTS: Intraclass-correlation-coefficient (ICC) and coefficient of variation (CoV) were used to test repeatability. Nonparametric tests were used to compare cohorts. Correlation of sPWV/cPWV, PWV-QA, forced expiratory volume in 1 sec (FEV1 ) %predicted, residual volume (RV) %predicted, age, and right heart catheterization (RHC) data were tested. Significance level α = 0.05 was used. RESULTS: sPWV and cPWV showed no significant differences between repeated measurements (P-range 0.10-0.92). CoV was generally lower than 15%. COPD and PH patients had significantly higher sPWV and cPWV than healthy subjects. Significant correlation was found between sPWV or cPWV and FEV1 %pred. (R = -0.36 and R = -0.44), but not with RHC (P-range -0.11 - 0.91) or age (P-range 0.23-0.89). Correlation to RV%pred. was significant for cPWV (R = 0.42) but not for sPWV (R = 0.34, P = 0.055). For all cohorts, sPWV and cPWV were significantly correlated with PWV-QA (R = -0.41 and R = 0.48). DATA CONCLUSION: PREFUL-derived PWV is feasible and repeatable. PWV is increased in COPD and PH patients and correlates to airway obstruction and hyperinflation. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

7.
Eur Radiol ; 34(1): 80-89, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37548691

RESUMEN

OBJECTIVES: To investigate whether 3D phase-resolved functional lung (PREFUL)-MRI parameters are suitable to measure response to elexacaftor/tezacaftor/ivacaftor (ETI) therapy and their association with clinical outcomes in cystic fibrosis (CF) patients. METHODS: Twenty-three patients with CF (mean age: 21; age range: 14-46) underwent MRI examination at baseline and 8-16 weeks after initiation of ETI. Morphological and 3D PREFUL scans assessed pulmonary ventilation. Morphological images were evaluated using a semi-quantitative scoring system, and 3D PREFUL scans were evaluated by ventilation defect percentage (VDP) values derived from regional ventilation (RVent) and cross-correlation maps. Improved ventilation volume (IVV) normalized to body surface area (BSA) between baseline and post-treatment visit was computed. Forced expiratory volume in 1 second (FEV1) and mid-expiratory flow at 25% of forced vital capacity (MEF25), as well as lung clearance index (LCI), were assessed. Treatment effects were analyzed using paired Wilcoxon signed-rank tests. Treatment changes and post-treatment agreement between 3D PREFUL and clinical parameters were evaluated by Spearman's correlation. RESULTS: After ETI therapy, all 3D PREFUL ventilation markers (all p < 0.0056) improved significantly, except for the mean RVent parameter. The BSA normalized IVVRVent was significantly correlated to relative treatment changes of MEF25 and mucus plugging score (all |r| > 0.48, all p < 0.0219). In post-treatment analyses, 3D PREFUL VDP values significantly correlated with spirometry, LCI, MRI global, morphology, and perfusion scores (all |r| > 0.44, all p < 0.0348). CONCLUSIONS: 3D PREFUL MRI is a very promising tool to monitor CFTR modulator-induced regional dynamic ventilation changes in CF patients. CLINICAL RELEVANCE STATEMENT: 3D PREFUL MRI is sensitive to monitor CFTR modulator-induced regional ventilation changes in CF patients. Improved ventilation volume correlates with the relative change of mucus plugging, suggesting that reduced endobronchial mucus is predominantly responsible for regional ventilation improvement. KEY POINTS: • 3D PREFUL MRI-derived ventilation maps show significantly reduced ventilation defects in CF patients after ETI therapy. • Significant post-treatment correlations of 3D PREFUL ventilation measures especially with LCI, FEV1 %pred, and global MRI score suggest that 3D PREFUL MRI is sensitive to measure improved regional ventilation of the lung parenchyma due to reduced inflammation induced by ETI therapy in CF patients. • 3D PREFUL MRI-derived improved ventilation volume (IVV) correlated with MRI mucus plugging score changes suggesting that reduced endobronchial mucus is predominantly responsible for regional ventilation improvement 8-16 weeks after ETI therapy.


Asunto(s)
Aminofenoles , Benzodioxoles , Fibrosis Quística , Indoles , Pirazoles , Piridinas , Pirrolidinas , Quinolonas , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Pulmón/diagnóstico por imagen , Ventilación Pulmonar , Imagen por Resonancia Magnética/métodos , Mutación
8.
Eur Radiol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060494

RESUMEN

OBJECTIVES: 3D phase-resolved functional lung (PREFUL) MRI offers evaluation of pulmonary ventilation without inhalation of contrast agent. This study seeks to compare ventilation maps obtained from 3D PREFUL MRI with a direct ventilation measurement derived from 129Xe MRI in both patients with chronic obstructive pulmonary disease (COPD) and healthy volunteers. METHODS: Thirty-one patients with COPD and 12 healthy controls underwent free-breathing 3D PREFUL MRI and breath-hold 129Xe MRI at 1.5 T. For both MRI techniques, ventilation defect (VD) maps were determined and respective ventilation defect percentage (VDP) values were computed. All parameters of both techniques were compared by Spearman correlation coefficient (r) and the differences between VDP values were quantified by Bland-Altman analysis and tested for significance using Wilcoxon signed-rank test. In a regional comparison of VD maps, spatial overlap and Sørensen-Dice coefficients of healthy and defect areas were computed. RESULTS: On a global level, all 3D PREFUL VDP values correlated significantly to VDP measure derived by 129Xe ventilation imaging (all r > 0.65; all p < 0.0001). 129Xe VDP was significantly greater than 3D PREFUL derived VDPRVent (mean bias = 10.5%, p < 0.001) and VDPFVL-CM (mean bias = 11.3%, p < 0.0001) but not for VDPCombined (mean bias = 1.7%, p = 0.70). The total regional agreement of 129Xe and 3D PREFUL VD maps ranged between 60% and 63%. CONCLUSIONS: Free-breathing 3D PREFUL MRI showed a strong correlation with breath-hold hyperpolarized 129Xe MRI regarding the VDP values and modest differences in the detection of VDs on a regional level. CLINICAL RELEVANCE STATEMENT: 3D PREFUL MRI correlated with 129Xe MRI, unveiling regional differences in COPD defect identification. This proposes 3D PREFUL MRI as a ventilation mapping surrogate, eliminating the need for extra hardware or inhaled gases. KEY POINTS: Current non-invasive evaluation techniques for lung diseases have drawbacks; 129Xe MRI is limited by cost and availability. 3D PREFUL MRI correlated with 129Xe MRI, with regional differences in identifying COPD defects. 3D PREFUL MRI can provide ventilation mapping without the need for additional hardware or inhaled gases.

9.
Eur Radiol ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460013

RESUMEN

OBJECTIVES: To investigate potential presence and resolution of longer-term pulmonary diffusion limitation and microvascular perfusion impairment in COVID-19 convalescents. MATERIALS AND METHODS: This prospective, longitudinal study was carried out between May 2020 and April 2023. COVID-19 convalescents repeatedly and age/sex-matched healthy controls once underwent MRI including hyperpolarized 129Xe MRI. Blood samples were obtained in COVID-19 convalescents for immunophenotyping. Ratios of 129Xe in red blood cells (RBC), tissue/plasma (TP), and gas phase (GP) as well as lung surface-volume ratio were quantified and correlations with CD4+/CD8+ T cell frequencies were assessed using Pearson's correlation coefficient. Signed-rank tests were used for longitudinal and U tests for group comparisons. RESULTS: Thirty-five participants were recruited. Twenty-three COVID-19 convalescents (age 52.1 ± 19.4 years, 13 men) underwent baseline MRI 12.6 ± 4.2 weeks after symptom onset. Fourteen COVID-19 convalescents underwent follow-up MRI and 12 were included for longitudinal comparison (baseline MRI at 11.5 ± 2.7 weeks and follow-up 38.0 ± 5.5 weeks). Twelve matched controls were included for comparison. In COVID-19 convalescents, RBC-TP was increased at follow-up (p = 0.04). Baseline RBC-TP was lower in patients treated on intensive care unit (p = 0.03) and in patients with severe/critical disease (p = 0.006). RBC-TP correlated with CD4+/CD8+ T cell frequencies (R = 0.61/ - 0.60) at baseline. RBC-TP was not significantly different compared to matched controls at follow-up (p = 0.25). CONCLUSION: Impaired microvascular pulmonary perfusion and alveolar membrane function persisted 12 weeks after symptom onset and resolved within 38 weeks after COVID-19 symptom onset. CLINICAL RELEVANCE STATEMENT: 129Xe MRI shows improvement of microvascular pulmonary perfusion and alveolar membrane function between 11.5 ± 2.7 weeks and 38.0 ± 5.5 weeks after symptom onset in patients after COVID-19, returning to normal in subjects without significant prior disease. KEY POINTS: • The study aims to investigate long-term effects of COVID-19 on lung function, in particular gas uptake efficiency, and on the cardiovascular system. • In COVID-19 convalescents, the ratio of 129Xe in red blood cells/tissue plasma increased longitudinally (p = 0.04), but was not different from matched controls at follow-up (p = 0.25). • Microvascular pulmonary perfusion and alveolar membrane function are impaired 11.5 weeks after symptom onset in patients after COVID-19, returning to normal in subjects without significant prior disease at 38.0 weeks.

10.
Respiration ; 103(2): 88-94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38272004

RESUMEN

INTRODUCTION: Photon counting (PC) detectors allow a reduction of the radiation dose in CT. Chest X-ray (CXR) is known to have a low sensitivity and specificity for detection of pneumonic infiltrates. The aims were to establish an ultra-low-dose CT (ULD-CT) protocol at a PC-CT with the radiation dose comparable to the dose of a CXR and to evaluate its clinical yield in patients with suspicion of pneumonia. METHODS: A ULD-CT protocol was established with the aim to meet the radiation dose of a CXR. In this retrospective study, all adult patients who received a ULD-CT of the chest with suspected pneumonia were included. Radiation exposure of ULD-CT and CXR was calculated. The clinical significance (new diagnosis, change of therapy, additional findings) and limitations were evaluated by a radiologist and a pulmonologist considering previous CXR and clinical data. RESULTS: Twenty-seven patients (70% male, mean age 68 years) were included. With our ULD-CT protocol, the radiation dose of a CXR could be reached (mean radiation exposure 0.11 mSv). With ULD-CT, the diagnosis changed in 11 patients (41%), there were relevant additional findings in 4 patients (15%), an infiltrate (particularly fungal infiltrate under immunosuppression) could be ruled out with certainty in 10 patients (37%), and the therapy changed in 10 patients (37%). Two patients required an additional CT with contrast medium to rule out a pulmonary embolism or pleural empyema. CONCLUSIONS: With ULD-CT, the radiation dose of a CXR could be reached while the clinical impact is higher with change in diagnosis in 41%.


Asunto(s)
Neumonía , Tomografía Computarizada por Rayos X , Adulto , Humanos , Masculino , Anciano , Femenino , Estudios Retrospectivos , Estudios de Factibilidad , Rayos X , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Neumonía/diagnóstico por imagen
11.
Zentralbl Chir ; 149(1): 96-115, 2024 Feb.
Artículo en Alemán | MEDLINE | ID: mdl-37816386

RESUMEN

The process of implementing early detection of lung cancer with low-dose CT (LDCT) in Germany has gained significant momentum in recent years. It is expected that the ordinance of the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) on early detection of lung cancer, which has been commented on by the professional societies, will come into effect by the end of 2023. Based on this regulation, the Federal Joint Committee (G-BA) will set up a program for early lung cancer detection with LDCT in the near future. In this position paper, the specialist societies involved in lung cancer screening present concrete cornerstones for a uniform, structured and quality-assured early detection program for lung cancer in Germany to make a constructive contribution to this process.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Tomografía Computarizada por Rayos X , Neoplasias Pulmonares/diagnóstico por imagen , Alemania , Sociedades Médicas , Tamizaje Masivo
12.
Pneumologie ; 78(1): 15-34, 2024 Jan.
Artículo en Alemán | MEDLINE | ID: mdl-37816379

RESUMEN

The process of implementing early detection of lung cancer with low-dose CT (LDCT) in Germany has gained significant momentum in recent years. It is expected that the ordinance of the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) on early detection of lung cancer, which has been commented on by the professional societies, will come into effect by the end of 2023. Based on this regulation, the Federal Joint Committee (G-BA) will set up a program for early lung cancer detection with LDCT in the near future. In this position paper, the specialist societies involved in lung cancer screening present concrete cornerstones for a uniform, structured and quality-assured early detection program for lung cancer in Germany to make a constructive contribution to this process.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Tomografía Computarizada por Rayos X , Neoplasias Pulmonares/diagnóstico por imagen , Factores de Riesgo , Alemania , Tamizaje Masivo
13.
Radiology ; 308(1): e230318, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37432088

RESUMEN

Background Experience with functional CT in the lungs without additional equipment in clinical routine is limited. Purpose To report initial experience and evaluate the robustness of a modified chest CT protocol and photon-counting CT (PCCT) for comprehensive analysis of pulmonary vasculature, perfusion, ventilation, and morphologic structure in a single examination. Materials and Methods In this retrospective study, consecutive patients with clinically indicated CT for various known and unknown pulmonary function impairment (six subgroups) were included between November 2021 and June 2022. After administration of an intravenous contrast agent, inspiratory PCCT was followed by expiratory PCCT after a delay of 5 minutes. Advanced automated postprocessing was performed, and CT-derived functional parameters were calculated (regional ventilation, perfusion, late contrast enhancement, and CT angiography). Mean intravascular contrast enhancement in the mediastinal vessels and radiation dose were determined. Using analysis of variance, the mean values of lung volumes, attenuation, ventilation, perfusion, and late contrast enhancement were tested for differences between subgroups of patients. Results In 166 patients (mean age, 63.2 years ± 14.2 [SD]; 106 male patients), all CT-derived parameters could be acquired (84.7% success rate; 166 of 196 patients). At the inspiratory examination, mean density was 325 HU in the pulmonary trunk, 260 HU in the left atrium, and 252 HU in the ascending aorta. The mean dose-length product for inspiration and expiration was 110.32 mGy · cm and 109.47 mGy · cm, respectively; the mean CT dose index for inspiration and expiration was 3.22 mGy and 3.09 mGy, respectively (less than the mean total radiation dose of 8-12 mGy, which is diagnostic reference level). Significant differences (P < .05) between the subgroups were found for all assessed parameters. Visual inspection allowed for voxelwise assessment of morphologic structure and function. Conclusion The proposed PCCT protocol allowed for a dose-efficient and robust simultaneous evaluation of pulmonary morphologic structure, ventilation, vasculature, and parenchymal perfusion in a procedure requiring advanced software but no additional hardware. © RSNA, 2023.


Asunto(s)
Respiración , Tomografía Computarizada por Rayos X , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Arteria Pulmonar , Pulmón/diagnóstico por imagen
14.
Radiology ; 307(4): e221958, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37070996

RESUMEN

Background Chronic lung allograft dysfunction (CLAD), the physiologic correlate of chronic rejection, remains a major barrier to long-term survival following lung transplant. Biomarkers for early prediction of future transplant loss or death due to CLAD might open a window of opportunity for early diagnosis and treatment of CLAD. Purpose To evaluate the prognostic use of phase-resolved functional lung (PREFUL) MRI in predicting CLAD-related transplant loss or death. Materials and Methods In this prospective, longitudinal, single-center study, PREFUL MRI-derived ventilation and parenchymal lung perfusion parameters of bilateral lung transplant recipients without clinically suspected CLAD were assessed 6-12 months (baseline) and 2.5 years (follow-up) after transplant. MRI scans were acquired between August 2013 and December 2018. Regional flow volume loop (RFVL)-based ventilated volume (VV) and perfused volume were calculated using thresholds and spatially combined as ventilation-perfusion (V/Q) matching. Spirometry data were obtained on the same day. Exploratory models were calculated using receiver operating characteristic analysis, and subsequent survival analyses (Kaplan-Meier, hazard ratios [HRs]) of CLAD-related graft loss were performed to compare clinical and MRI parameters as clinical end points. Results At baseline MRI examination, 132 clinically stable patients of 141 patients (median age, 53 years [IQR, 43-59 years]; 78 men) were included (nine were excluded for deaths not associated with CLAD), 24 of which had CLAD-related graft loss (death or retransplant) within the observational period of 5.6 years. PREFUL MRI-derived RFVL VV was a predictor of poorer survival (cutoff, 92.3%; log-rank P = .02; HR for graft loss, 2.5 [95% CI: 1.1, 5.7]; P = .02), while perfused volume (P = .12) and spirometry (P = .33) were not predictive of differences in survival. In the evaluation of percentage change at follow-up MRI (92 stable patients vs 11 with CLAD-related graft loss), mean RFVL (cutoff, 97.1%; log-rank P < .001; HR, 7.7 [95% CI: 2.3, 25.3]), V/Q defect (cutoff, 498%; log-rank P = .003; HR, 6.6 [95% CI: 1.7, 25.0]), and forced expiratory volume in the first second of expiration (cutoff, 60.8%; log-rank P < .001; HR, 7.9 [95% CI: 2.3, 27.4]; P = .001) were predictive of poorer survival within 2.7 years (IQR, 2.2-3.5 years) after follow-up MRI. Conclusion Phase-resolved functional lung MRI ventilation-perfusion matching parameters were predictive of future chronic lung allograft dysfunction-related death or transplant loss in a large prospective cohort who had undergone lung transplant. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Fain and Schiebler in this issue.


Asunto(s)
Trasplante de Pulmón , Pulmón , Masculino , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Enfermedad Crónica , Estudios Retrospectivos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Perfusión , Aloinjertos
15.
Radiology ; 306(3): e221250, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36125379

RESUMEN

Background Long COVID occurs at a lower frequency in children and adolescents than in adults. Morphologic and free-breathing phase-resolved functional low-field-strength MRI may help identify persistent pulmonary manifestations after SARS-CoV-2 infection. Purpose To characterize both morphologic and functional changes of lung parenchyma at low-field-strength MRI in children and adolescents with post-COVID-19 condition compared with healthy controls. Materials and Methods Between August and December 2021, a cross-sectional clinical trial using low-field-strength MRI was performed in children and adolescents from a single academic medical center. The primary outcome was the frequency of morphologic changes at MRI. Secondary outcomes included MRI-derived functional proton ventilation and perfusion parameters. Clinical symptoms, the duration from positive reverse transcriptase-polymerase chain reaction test result, and serologic parameters were compared with imaging results. Nonparametric tests for pairwise and corrected tests for groupwise comparisons were applied to assess differences in healthy controls, recovered participants, and those with long COVID. Results A total of 54 participants after COVID-19 infection (mean age, 11 years ± 3 [SD]; 30 boys [56%]) and nine healthy controls (mean age, 10 years ± 3; seven boys [78%]) were included: 29 (54%) in the COVID-19 group had recovered from infection and 25 (46%) were classified as having long COVID on the day of enrollment. Morphologic abnormality was identified in one recovered participant. Both ventilated and perfused lung parenchyma (ventilation-perfusion [V/Q] match) was higher in healthy controls (81% ± 6.1) compared with the recovered group (62% ± 19; P = .006) and the group with long COVID (60% ± 20; P = .003). V/Q match was lower in patients with time from COVID-19 infection to study participation of less than 180 days (63% ± 20; P = .03), 180-360 days (63% ± 18; P = .03), and 360 days (41% ± 12; P < .001) as compared with the never-infected healthy controls (81% ± 6.1). Conclusion Low-field-strength MRI showed persistent pulmonary dysfunction in children and adolescents who recovered from COVID-19 and those with long COVID. Clinical trial registration no. NCT04990531 © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Paltiel in this issue.


Asunto(s)
COVID-19 , Adolescente , Adulto , Niño , Humanos , Masculino , Estudios Transversales , Pulmón/diagnóstico por imagen , Síndrome Post Agudo de COVID-19 , SARS-CoV-2
16.
NMR Biomed ; 36(3): e4860, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36285811

RESUMEN

The purpose of the current study was to assess the influence of the registration algorithms on the repeatability of three-dimensional (3D) phase-resolved functional lung (PREFUL) ventilation magnetic resonance imaging (MRI). Twenty-three healthy volunteers and 10 patients with chronic obstructive pulmonary disease (COPD) underwent 3D PREFUL MRI during tidal breathing. The registration of dynamically acquired data to a fixed image was executed using single-step, stepwise, and group-oriented registration (GOREG) approaches. Advanced Normalization Tools (ANTs) and the Forsberg image-registration package were used for the registration. Image registration algorithms were tested for differences and evaluated by the repeatability analysis of ventilation parameters using coefficient of variation (CoV), intraclass-correlation coefficient, Bland-Altman plots, and correlation to spirometry. Also, the registration time and image quality were computed for all registration approaches. Very strong to strong correlations (r range: 0.917-0.999) were observed between ventilation parameters derived using various registration approaches. Median CoV values of the cross-correlation (CC) parameter were significantly lower (all p ≤ 0.0054) for ANTs GOREG compared with single-step and stepwise ANTs registration. The majority of comparisons between COPD patients and age-matched healthy volunteers showed agreement among the registration approaches. The repeatability of regional ventilation (RVent)-based ventilation defect percentage (VDPRVent ) and VDPCC was significantly higher (both p ≤ 0.0054) for Forsberg GOREG compared with ANTs GOREG. All 3D PREFUL-derived ventilation parameters correlated with forced expiratory volume in 1 s (FEV1 ) and the FEV1 / forced vital capacity (FVC) ratio (all |r| > 0.40, all p < 0.03). The image sharpness of RVent maps was statistically elevated (all p < 0.001) using GOREG compared with single-step and stepwise registration approaches using ANTs. The best computational performance was achieved with Forsberg GOREG. The GOREG scheme improves the repeatability and image quality of dynamic 3D PREFUL ventilation parameters. Registration time can be ~10-fold reduced to 9 min using the Forsberg method with equal or even improved repeatability and comparable PREFUL ventilation results compared with the ANTs method.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Voluntarios Sanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Ventilación Pulmonar
17.
J Magn Reson Imaging ; 57(6): 1908-1921, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36218321

RESUMEN

BACKGROUND: Free-breathing 1 H ventilation MRI shows promise but only single-center validation has yet been performed against methods which directly image lung ventilation in patients with cystic fibrosis (CF). PURPOSE: To investigate the relationship between 129 Xe and 1 H ventilation images using data acquired at two centers. STUDY TYPE: Sequence comparison. POPULATION: Center 1; 24 patients with CF (12 female) aged 9-47 years. Center 2; 7 patients with CF (6 female) aged 13-18 years, and 6 healthy controls (6 female) aged 21-31 years. Data were acquired in different patients at each center. FIELD STRENGTH/SEQUENCE: 1.5 T, 3D steady-state free precession and 2D spoiled gradient echo. ASSESSMENT: Subjects were scanned with 129 Xe ventilation and 1 H free-breathing MRI and performed pulmonary function tests. Ventilation defect percent (VDP) was calculated using linear binning and images were visually assessed by H.M., L.J.S., and G.J.C. (10, 5, and 8 years' experience). STATISTICAL TESTS: Correlations and linear regression analyses were performed between 129 Xe VDP, 1 H VDP, FEV1 , and LCI. Bland-Altman analysis of 129 Xe VDP and 1 H VDP was carried out. Differences in metrics were assessed using one-way ANOVA or Kruskal-Wallis tests. RESULTS: 129 Xe VDP and 1 H VDP correlated strongly with; each other (r = 0.84), FEV1 z-score (129 Xe VDP r = -0.83, 1 H VDP r = -0.80), and LCI (129 Xe VDP r = 0.91, 1 H VDP r = 0.82). Bland-Altman analysis of 129 Xe VDP and 1 H VDP from both centers had a bias of 0.07% and limits of agreement of -16.1% and 16.2%. Linear regression relationships of VDP with FEV1 were not significantly different between 129 Xe and 1 H VDP (P = 0.08), while 129 Xe VDP had a stronger relationship with LCI than 1 H VDP. DATA CONCLUSION: 1 H ventilation MRI shows large-scale agreement with 129 Xe ventilation MRI in CF patients with established lung disease but may be less sensitive to subtle ventilation changes in patients with early-stage lung disease. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Fibrosis Quística , Humanos , Femenino , Fibrosis Quística/diagnóstico por imagen , Ventilación Pulmonar , Pulmón/diagnóstico por imagen , Respiración , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón
18.
J Magn Reson Imaging ; 57(4): 1114-1128, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36129419

RESUMEN

BACKGROUND: 19 F MRI of inhaled gas tracers has developed into a promising tool for pulmonary diagnostics. Prior to clinical use, the intersession repeatability of acquired ventilation parameters must be quantified and maximized. PURPOSE: To evaluate repeatability of static and dynamic 19 F ventilation parameters and correlation with predicted forced expiratory volume in 1 second (FEV1 %pred) with and without inspiratory volume control. STUDY TYPE: Prospective. POPULATION: A total of 30 healthy subjects and 26 patients with chronic obstructive pulmonary disease (COPD). FIELD STRENGTH/SEQUENCE: Three-dimensional (3D) gradient echo pulse sequence with golden-angle stack-of-stars k-space encoding at 1.5 T. ASSESSMENT: All study participants underwent 19 F ventilation MRI over eight breaths with inspiratory volume control (w VC) and without inspiratory volume control (w/o VC), which was repeated within 1 week. Ventilated volume percentage (VVP), fractional ventilation (FV), and wash-in time (WI) were computed. Lung function testing was conducted on the first visit. STATISTICAL TESTS: Correlation between imaging and FEV1 %pred was measured using Pearson correlation coefficient (r). Differences in imaging parameters between first and second visit were analyzed using paired t-test. Repeatability was quantified using intraclass correlation coefficient (ICC) and coefficient of variation (CoV). Minimum detectable effect size (MDES) was calculated with a power analysis for study size n = 30 and a power of 0.8. All hypotheses were tested with a significance level of 5% two sided. RESULTS: Strong and moderate linear correlations with FEV1 %pred for COPD patients were found in almost all imaging parameters. The ICC w VC exceeds the ICC w/o VC for all imaging parameters. CoV was significantly lower w VC for initial VVP in COPD patients, FV, CoV FV, WI and standard deviation (SD) of WI. MDES of all imaging parameters were smaller w VC. DATA CONCLUSION: 19 F gas wash-in MRI with inspiratory volume control increases the correlation and repeatability of imaging parameters with lung function testing. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Prospectivos , Respiración , Imagen por Resonancia Magnética
19.
J Magn Reson Imaging ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732541

RESUMEN

BACKGROUND: Detection of pulmonary perfusion defects is the recommended approach for diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). This is currently achieved in a clinical setting using scintigraphy. Phase-resolved functional lung (PREFUL) magnetic resonance imaging (MRI) is an alternative technique for evaluating regional ventilation and perfusion without the use of ionizing radiation or contrast media. PURPOSE: To assess the feasibility and image quality of PREFUL-MRI in a multicenter setting in suspected CTEPH. STUDY TYPE: This is a prospective cohort sub-study. POPULATION: Forty-five patients (64 ± 16 years old) with suspected CTEPH from nine study centers. FIELD STRENGTH/SEQUENCE: 1.5 T and 3 T/2D spoiled gradient echo/bSSFP/T2 HASTE/3D MR angiography (TWIST). ASSESSMENT: Lung signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between study centers with different MRI machines. The contrast between normally and poorly perfused lung areas was examined on PREFUL images. The perfusion defect percentage calculated using PREFUL-MRI (QDPPREFUL ) was compared to QDP from the established dynamic contrast-enhanced MRI technique (QDPDCE ). Furthermore, QDPPREFUL was compared between a patient subgroup with confirmed CTEPH or chronic thromboembolic disease (CTED) to other clinical subgroups. STATISTICAL TESTS: t-Test, one-way analysis of variance (ANOVA), Pearson's correlation. Significance level was 5%. RESULTS: Significant differences in lung SNR and CNR were present between study centers. However, PREFUL perfusion images showed a significant contrast between normally and poorly perfused lung areas (mean delta of normalized perfusion -4.2% SD 3.3) with no differences between study sites (ANOVA: P = 0.065). QDPPREFUL was significantly correlated with QDPDCE (r = 0.66), and was significantly higher in 18 patients with confirmed CTEPH or CTED (57.9 ± 12.2%) compared to subgroups with other causes of PH or with excluded PH (in total 27 patients with mean ± SD QDPPREFUL = 33.9 ± 17.2%). DATA CONCLUSION: PREFUL-MRI could be considered as a non-invasive method for imaging regional lung perfusion in multicenter studies. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1.

20.
Pulm Pharmacol Ther ; 82: 102246, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37562641

RESUMEN

BACKGROUND: Bradykinin 1 receptor (B1R) signalling pathways may be involved in the inflammatory pathophysiology of chronic obstructive pulmonary disease (COPD). B1R signalling is induced by inflammatory stimuli or tissue injury and leads to activation and increased migration of pro-inflammatory cells. Lipopolysaccharide (LPS) lung challenge in man is an experimental method of exploring inflammation in the lung whereby interference in these pathways can help to assess pharmacologic interventions in COPD. BI 1026706, a potent B1R antagonist, was hypothesized to reduce the inflammatory activity after segmental lipopolysaccharide (LPS) challenge in humans due to decreased pulmonary cell influx. METHODS: In a monocentric, randomized, double-blind, placebo-controlled, parallel-group, phase I trial, 57 healthy, smoking subjects were treated for 28 days with either oral BI 1026706 100 mg bid or placebo. At day 21, turbo-inversion recovery magnitude magnetic resonance imaging (TIRM MRI) was performed. On the last day of treatment, pre-challenge bronchoalveolar lavage fluid (BAL) and biopsies were sampled, followed by segmental LPS challenge (40 endotoxin units/kg body weight) and saline control instillation in different lung lobes. Twenty-four hours later, TIRM MRI was performed, then BAL and biopsies were collected from the challenged segments. In BAL samples, cells were differentiated for neutrophil numbers as the primary endpoint. Other endpoints included assessment of safety, biomarkers in BAL (e.g. interleukin-8 [IL-8], albumin and total protein), B1R expression in lung biopsies and TIRM score by MRI as a measure for the extent of pulmonary oedema. RESULTS: After LPS, but not after saline, high numbers of inflammatory cells, predominantly neutrophils were observed in the airways. IL-8, albumin and total protein were also increased in BAL samples after LPS challenge as compared with saline control. There were no significant differences in cells or other biomarkers from BAL in volunteers treated with BI 1026706 compared with those treated with placebo. Unexpectedly, neutrophil numbers in BAL were 30% higher and MRI-derived extent of oedema was significantly higher with BI 1026706 treatment compared with placebo, 24 h after LPS challenge. Adverse events were mainly mild to moderate and not different between treatment groups. CONCLUSIONS: Treatment with BI 1026706 for four weeks was safe and well-tolerated in healthy smoking subjects. BI 1026706 100 mg bid did not provide evidence for anti-inflammatory effects in the human bronchial LPS challenge model. TRIAL REGISTRATION: The study was registered on January 14, 2016 at ClinicalTrials.gov (NCT02657408).


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Lipopolisacáridos , Interleucina-8 , Bradiquinina/farmacología , Fumadores , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Líquido del Lavado Bronquioalveolar , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Biomarcadores , Albúminas/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA