Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 192(7): 3143-55, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24574500

RESUMEN

The molecular basis of TNF tolerance is poorly understood. In human monocytes we detected two forms of TNF refractoriness, as follows: absolute tolerance was selective, dose dependently affecting a small group of powerful effector molecules; induction tolerance represented a more general phenomenon. Preincubation with a high TNF dose induces both absolute and induction tolerance, whereas low-dose preincubation predominantly mediates absolute tolerance. In cells preincubated with the high TNF dose, we observed blockade of IκBα phosphorylation/proteolysis and nuclear p65 translocation. More prominent in cells preincubated with the high dose, reduced basal IκBα levels were found, accompanied by increased IκBα degradation, suggesting an increased IκBα turnover. In addition, a nuclear elevation of p50 was detected in tolerant cells, which was more visible following high-dose preincubation. TNF-induced phosphorylation of p65-Ser(536), p38, and c-jun was inhibited, and basal inhibitory p65-Ser(468) phosphorylation was increased in tolerant cells. TNF tolerance induced by the low preincubation dose is mediated by glycogen synthesis kinase-3, whereas high-dose preincubation-mediated tolerance is regulated by A20/glycogen synthesis kinase-3 and protein phosphatase 1-dependent mechanisms. To our knowledge, we present the first genome-wide analysis of TNF tolerance in monocytic cells, which differentially inhibits NF-κB/AP-1-associated signaling and shifts the kinase/phosphatase balance. These forms of refractoriness may provide a cellular paradigm for resolution of inflammation and may be involved in immune paralysis.


Asunto(s)
Monocitos/inmunología , FN-kappa B/inmunología , Proteína Fosfatasa 1/inmunología , Transducción de Señal/inmunología , Factor de Transcripción AP-1/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos/inmunología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/inmunología , Glucógeno Sintasa Quinasa 3/metabolismo , Células HeLa , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación/efectos de los fármacos , Fosforilación/inmunología , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Factor de Transcripción ReIA/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/inmunología , Factor de Necrosis Tumoral alfa/farmacología
2.
Cell Mol Life Sci ; 71(1): 63-92, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23525665

RESUMEN

Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.


Asunto(s)
Monocitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética
3.
Genetics ; 179(3): 1313-25, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18562669

RESUMEN

Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimología , Proteínas Fúngicas/metabolismo , Hifa/enzimología , Neurospora crassa/enzimología , Neurospora crassa/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Eliminación de Gen , Histidina Quinasa , Hifa/citología , Hifa/crecimiento & desarrollo , Modelos Biológicos , Neurospora crassa/citología , Fenotipo , Proteínas Serina-Treonina Quinasas
4.
Mol Biol Cell ; 17(9): 4080-92, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16822837

RESUMEN

Members of the Ste20 and NDR protein kinase families are important for normal cell differentiation and morphogenesis in various organisms. We characterized POD6 (NCU02537.2), a novel member of the GCK family of Ste20 kinases that is essential for hyphal tip extension and coordinated branch formation in the filamentous fungus Neurospora crassa. pod-6 and the NDR kinase mutant cot-1 exhibit indistinguishable growth defects, characterized by cessation of cell elongation, hyperbranching, and altered cell-wall composition. We suggest that POD6 and COT1 act in the same genetic pathway, based on the fact that both pod-6 and cot-1 can be suppressed by 1) environmental stresses, 2) altering protein kinase A activity, and 3) common extragenic suppressors (ropy, as well as gul-1, which is characterized here as the ortholog of the budding and fission yeasts SSD1 and Sts5, respectively). Unlinked noncomplementation of cot-1/pod-6 alleles indicates a potential physical interaction between the two kinases, which is further supported by coimmunoprecipitation analyses, partial colocalization of both proteins in wild-type cells, and their common mislocalization in dynein/kinesin mutants. We conclude that POD6 acts together with COT1 and is essential for polar cell extension in a kinesin/dynein-dependent manner in N. crassa.


Asunto(s)
Polaridad Celular , Proteínas Fúngicas/metabolismo , Neurospora crassa/citología , Neurospora crassa/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Polaridad Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Quinasas del Centro Germinal , Hifa/citología , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación/efectos de los fármacos , Mutación/genética , Neurospora crassa/efectos de los fármacos , Fenotipo , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Transporte de Proteínas/efectos de los fármacos , Alineación de Secuencia , Cloruro de Sodio/farmacología
5.
Fungal Genet Biol ; 45(2): 127-38, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17631397

RESUMEN

The velvet factor of the homothallic fungus Aspergillus nidulans promotes sexual fruiting body formation. The encoding veA gene is conserved among fungi, including the ascomycete Neurospora crassa. There, the orthologous ve-1 gene encodes a deduced protein with high similarity to A. nidulans VeA. Cross-complementation experiments suggest that both the promoter and the coding sequence of N. crassa ve-1 are functional to complement the phenotype of an A. nidulans deletion mutant. Moreover, ve-1 expression in the heterologous host A. nidulans results in development of reproductive structures in a light-dependent manner, promoting sexual development in the darkness while stimulating asexual sporulation under illumination. Deletion of the N. crassa ve-1 locus by homologous gene replacement causes formation of shortened aerial hyphae accompanied by a significant increase in asexual conidiation, which is not light-dependent. Our data suggest that the conserved velvet proteins of A. nidulans and N. crassa exhibit both similar and different functions to influence development of these two ascomycetes.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Neurospora crassa/fisiología , Secuencia de Aminoácidos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Alineación de Secuencia , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
6.
Mol Biol Cell ; 19(11): 4554-69, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18716060

RESUMEN

Regulation of Rho GTPase signaling is critical for cell shape determination and polarity. Here, we investigated the role of LRG1, a novel member of the GTPase-activating proteins (GAPs) of Neurospora crassa. LRG1 is essential for apical tip extension and to restrict excessive branch formation in subapical regions of the hypha and is involved in determining the size of the hyphal compartments. LRG1 localizes to hyphal tips and sites of septation via its three LIM domains. The accumulation of LRG1 as an apical cap is dependent on a functional actin cytoskeleton and active growth, and is influenced by the opposing microtubule-dependent motor proteins dynein and kinesin-1. Genetic evidence and in vitro GTPase assays identify LRG1 as a RHO1-specific GAP affecting several output pathways of RHO1, based on hyposensitivity to the glucan inhibitor caspofungin, synthetic lethality with a hyperactive beta1,3-glucan synthase mutant, altered PKC/MAK1 pathway activities, and hypersensitivity to latrunculin A. The morphological defects of lrg-1 are highly reminiscent to the Ndr kinase/RAM pathway mutants cot-1 and pod-6, and genetic evidence suggests that RHO1/LRG1 function in parallel with COT1 in coordinating apical tip growth.


Asunto(s)
Polaridad Celular , Proteínas Fúngicas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Neurospora/enzimología , Neurospora/crecimiento & desarrollo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteínas Fúngicas/química , Hifa/crecimiento & desarrollo , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Motoras Moleculares/metabolismo , Mutación/genética , Neurospora/citología , Estructura Terciaria de Proteína , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA