Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 9(34): eadg3247, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611094

RESUMEN

Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.


Asunto(s)
Octopodiformes , Animales , Femenino , Suplementos Dietéticos , Planeta Tierra , Ecología , Incubadoras , Agua
2.
Syst Biol ; 60(4): 420-38, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21525529

RESUMEN

Reconstruction of the phylogeny of the five extant classes of the phylum Echinodermata has proven difficult. Results concerning higher-level taxonomic relationships among echinoderms are sensitive to the choice of analytical parameters and methods. Moreover, the proposal of a putative sixth class based on a small enigmatic disc-shaped echinoderm, Xyloplax, from the deep seas of the Bahamas and New Zealand in the 1980s further complicated the problem. Although clearly an echinoderm, Xyloplax did not have clear affinity among known groups. Using molecular sequence and developmental data from recently collected Xyloplax adults and embryos, we show that rather than representing an ancient distinct lineage as implied by its status as a class, Xyloplax is simply a starfish that is closely related to the asteroid family Pterasteridae. Many members of the Pterasteridae and all Xyloplax inhabit deep or polar seas and brood young. Brooding pterasterids and Xyloplax hold their young in specialized adult chambers until the young reach an advanced juvenile stage after which they are released as free-living individuals. We hypothesize that the unique morphology of Xyloplax evolved via progenesis--the truncation of somatic growth at a juvenile body plan but with gonadal growth to maturity. Although the overall phylogeny of extant echinoderms remains sensitive to the choice of analytical methods, the placement of Xyloplax as sister to pterasterid asteroids is unequivocal. Based on this, we argue that the proposed class and infraclass status of Xyloplax should be suppressed.


Asunto(s)
Equinodermos/clasificación , Filogenia , Sustitución de Aminoácidos , Animales , Equinodermos/anatomía & histología , Equinodermos/genética , Embrión no Mamífero/anatomía & histología , Mutación INDEL , Metamorfosis Biológica , Estrellas de Mar/anatomía & histología , Estrellas de Mar/clasificación , Estrellas de Mar/genética
3.
Conserv Biol ; 26(5): 938-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22620276

RESUMEN

The fauna of deep-sea hydrothermal vents are among the most isolated and inaccessible biological communities on Earth. Most vent sites can only be visited by subsea vehicles, which can and do move freely among these communities. Researchers assume individuals of the regionally homogeneous vent fauna are killed by the change in hydrostatic pressure the animals experience when the subsea vehicles, which collected them, rise to the surface. After an Alvin dive, we found 38 apparently healthy individuals of a vent limpet in a sample from a hydrothermally inactive area. Prompted by our identification of these specimens as Lepetodrilus gordensis, a species restricted to vents 635 km to the south of our dive site, we tested whether they were from a novel population or were contaminants from the dive made 36 h earlier. The 16S gene sequences, morphology, sex ratio, bacterial colonies, and stable isotopes uniformly indicated the specimens came from the previous dive. We cleaned the sampler, but assumed pressure changes would kill any organisms we did not remove and that the faunas of the 2 areas were nearly identical and disease-free. Our failure to completely clean the gear on the subsea vehicle meant we could have introduced the species and any diseases it carried to a novel location. Our findings suggest that the nearly inaccessible biological communities at deep-sea vents may be vulnerable to anthropogenic alteration, despite their extreme physical conditions.


Asunto(s)
Migración Animal , Gastrópodos/fisiología , Respiraderos Hidrotermales , Animales , Conservación de los Recursos Naturales , Femenino , Gastrópodos/genética , Especies Introducidas , Masculino , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
Biodivers Data J ; (5): e14598, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28874906

RESUMEN

BACKGROUND: There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. NEW INFORMATION: Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.

5.
Biol Bull ; 202(2): 148-55, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11971810

RESUMEN

Taxonomic accounts of octopodids frequently describe the spermatophore, the penis that releases the spermatophore from the internal organs, and the ligula and calamus that transfer it to a female. To explore relationships among these male features and body size, this study applies principal components analysis to data from 43 species of the family Octopodidae, or benthic octopuses. Covariation in penis and mantle length opposed by covariation in ligula and calamus lengths forms primary shape variation. Secondary shape variation is due to opposing variation between ligula and calamus lengths. Primary shape variation is greatest among shallow-water species. The calami and ligulae of diurnal and crepuscular shallow-water species are short compared to those of nocturnal shallow-water species. Because these structures contain heterogeneous collagen arrays and lack camouflaging chromatophore organs, they are white. Diurnal and crepuscular octopus species may minimize their lengths due to selection imposed by visual predators. Secondary shape variation is greater in deep-sea and high-latitude octopuses. Members of Voss's Eledoninae (except Eledone) and Graneledoninae and two species of Benthoctopus have exceptionally long calami and comparatively short ligulae; these lengths vary among members of the Bathypolypodinae. Variation in spermatophore length is independent of the structures considered.


Asunto(s)
Genitales Masculinos/anatomía & histología , Octopodiformes/anatomía & histología , Animales , Evolución Biológica , Ecosistema , Masculino , Octopodiformes/clasificación , Pene/anatomía & histología , Especificidad de la Especie , Espermatogonias/citología
7.
Evolution ; 45(7): 1726-1730, 1991 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28564137
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA