Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37643610

RESUMEN

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Histonas , Nucleosomas , Ensamble y Desensamble de Cromatina , ADN , Metilasas de Modificación del ADN , Epigénesis Genética , Histonas/genética , Nucleosomas/genética , Semen , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Cell ; 151(1): 181-93, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021224

RESUMEN

Mononucleosomes, the basic building blocks of chromatin, contain two copies of each core histone. The associated posttranslational modifications regulate essential chromatin-dependent processes, yet whether each histone copy is identically modified in vivo is unclear. We demonstrate that nucleosomes in embryonic stem cells, fibroblasts, and cancer cells exist in both symmetrically and asymmetrically modified populations for histone H3 lysine 27 di/trimethylation (H3K27me2/3) and H4K20me1. Further, we obtained direct physical evidence for bivalent nucleosomes carrying H3K4me3 or H3K36me3 along with H3K27me3, albeit on opposite H3 tails. Bivalency at target genes was resolved upon differentiation of ES cells. Polycomb repressive complex 2-mediated methylation of H3K27 was inhibited when nucleosomes contain symmetrically, but not asymmetrically, placed H3K4me3 or H3K36me3. These findings uncover a potential mechanism for the incorporation of bivalent features into nucleosomes and demonstrate how asymmetry might set the stage to diversify functional nucleosome states.


Asunto(s)
Células Madre Embrionarias/metabolismo , Código de Histonas , Histonas/metabolismo , Nucleosomas/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Línea Celular , Fibroblastos/metabolismo , Células HeLa , Histonas/química , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional
3.
Mol Cell ; 73(5): 930-945.e4, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30709709

RESUMEN

R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment.


Asunto(s)
Islas de CpG , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/fisiología , Complejo Represivo Polycomb 1/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Línea Celular , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Conformación de Ácido Nucleico , Complejo Represivo Polycomb 1/genética , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/genética
4.
Biochem Soc Trans ; 52(3): 1219-1232, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38778762

RESUMEN

Nucleosomes constitute the fundamental building blocks of chromatin. They are comprised of DNA wrapped around a histone octamer formed of two copies each of the four core histones H2A, H2B, H3, and H4. Nucleosomal histones undergo a plethora of posttranslational modifications that regulate gene expression and other chromatin-templated processes by altering chromatin structure or by recruiting effector proteins. Given their symmetric arrangement, the sister histones within a nucleosome have commonly been considered to be equivalent and to carry the same modifications. However, it is now clear that nucleosomes can exhibit asymmetry, combining differentially modified sister histones or different variants of the same histone within a single nucleosome. Enabled by the development of novel tools that allow generating asymmetrically modified nucleosomes, recent biochemical and cell-based studies have begun to shed light on the origins and functional consequences of nucleosomal asymmetry. These studies indicate that nucleosomal asymmetry represents a novel regulatory mechanism in the establishment and functional readout of chromatin states. Asymmetry expands the combinatorial space available for setting up complex sets of histone marks at individual nucleosomes, regulating multivalent interactions with histone modifiers and readers. The resulting functional consequences of asymmetry regulate transcription, poising of developmental gene expression by bivalent chromatin, and the mechanisms by which oncohistones deregulate chromatin states in cancer. Here, we review recent progress and current challenges in uncovering the mechanisms and biological functions of nucleosomal asymmetry.


Asunto(s)
Histonas , Nucleosomas , Procesamiento Proteico-Postraduccional , Nucleosomas/metabolismo , Histonas/metabolismo , Humanos , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina
5.
Plant Cell ; 33(4): 961-979, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793815

RESUMEN

Epigenetic mechanisms play diverse roles in the regulation of genome stability in eukaryotes. In Arabidopsis thaliana, genome stability is maintained during DNA replication by the H3.1K27 methyltransferases ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6, which catalyze the deposition of K27me1 on replication-dependent H3.1 variants. The loss of H3.1K27me1 in atxr5 atxr6 double mutants leads to heterochromatin defects, including transcriptional de-repression and genomic instability, but the molecular mechanisms involved remain largely unknown. In this study, we identified the transcriptional co-activator and conserved histone acetyltransferase GCN5 as a mediator of transcriptional de-repression and genomic instability in the absence of H3.1K27me1. GCN5 is part of a SAGA-like complex in plants that requires the GCN5-interacting protein ADA2b and the chromatin remodeler CHR6 to mediate the heterochromatic defects in atxr5 atxr6 mutants. Our results also indicate that Arabidopsis GCN5 acetylates multiple lysine residues on H3.1 variants, but H3.1K27 and H3.1K36 play essential functions in inducing genomic instability in the absence of H3.1K27me1. Finally, we show that H3.1K36 acetylation by GCN5 is negatively regulated by H3.1K27me1 in vitro. Overall, this work reveals a key molecular role for H3.1K27me1 in maintaining transcriptional silencing and genome stability in heterochromatin by restricting GCN5-mediated histone acetylation in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Inestabilidad Genómica , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Acetilación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Silenciador del Gen , Genoma de Planta , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Acetiltransferasas/genética , Histonas/genética , Lisina/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Nucleic Acids Res ; 50(5): 2549-2565, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188579

RESUMEN

The Isw1b chromatin-remodeling complex is specifically recruited to gene bodies to help retain pre-existing histones during transcription by RNA polymerase II. Recruitment is dependent on H3K36 methylation and the Isw1b subunit Ioc4, which contains an N-terminal PWWP domain. Here, we present the crystal structure of the Ioc4-PWWP domain, including a detailed functional characterization of the domain on its own as well as in the context of full-length Ioc4 and the Isw1b remodeler. The Ioc4-PWWP domain preferentially binds H3K36me3-containing nucleosomes. Its ability to bind DNA is required for nucleosome binding. It is also furthered by the unique insertion motif present in Ioc4-PWWP. The ability to bind H3K36me3 and DNA promotes the interaction of full-length Ioc4 with nucleosomes in vitro and they are necessary for its recruitment to gene bodies in vivo. Furthermore, a fully functional Ioc4-PWWP domain promotes efficient remodeling by Isw1b and the maintenance of ordered chromatin in vivo, thereby preventing the production of non-coding RNAs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Código de Histonas , Cromatina , ADN/química , Metilación , Nucleosomas/genética , Unión Proteica
7.
Proc Natl Acad Sci U S A ; 117(26): 15316-15321, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541063

RESUMEN

Noncoding RNA plays essential roles in transcriptional control and chromatin silencing. At Arabidopsis thaliana FLC, antisense transcription quantitatively influences transcriptional output, but the mechanism by which this occurs is still unclear. Proximal polyadenylation of the antisense transcripts by FCA, an RNA-binding protein that physically interacts with RNA 3' processing factors, reduces FLC transcription. This process genetically requires FLD, a homolog of the H3K4 demethylase LSD1. However, the mechanism linking RNA processing to FLD function had not been established. Here, we show that FLD tightly associates with LUMINIDEPENDENS (LD) and SET DOMAIN GROUP 26 (SDG26) in vivo, and, together, they prevent accumulation of monomethylated H3K4 (H3K4me1) over the FLC gene body. SDG26 interacts with the RNA 3' processing factor FY (WDR33), thus linking activities for proximal polyadenylation of the antisense transcripts to FLD/LD/SDG26-associated H3K4 demethylation. We propose this demethylation antagonizes an active transcription module, thus reducing H3K36me3 accumulation and increasing H3K27me3. Consistent with this view, we show that Polycomb Repressive Complex 2 (PRC2) silencing is genetically required by FCA to repress FLC Overall, our work provides insights into RNA-mediated chromatin silencing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , ARN sin Sentido , ARN de Planta/metabolismo , Transcripción Genética/fisiología , Proteínas de Arabidopsis/genética , Cromatina , ARN de Planta/genética
8.
PLoS Genet ; 16(5): e1008681, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32463832

RESUMEN

A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/metabolismo , Transposasas/fisiología , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Células Cultivadas , Domesticación , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Células Sf9 , Spodoptera , Transposasas/genética
9.
Genes Dev ; 27(12): 1318-38, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23788621

RESUMEN

Histone modifications and chromatin-associated protein complexes are crucially involved in the control of gene expression, supervising cell fate decisions and differentiation. Many promoters in embryonic stem (ES) cells harbor a distinctive histone modification signature that combines the activating histone H3 Lys 4 trimethylation (H3K4me3) mark and the repressive H3K27me3 mark. These bivalent domains are considered to poise expression of developmental genes, allowing timely activation while maintaining repression in the absence of differentiation signals. Recent advances shed light on the establishment and function of bivalent domains; however, their role in development remains controversial, not least because suitable genetic models to probe their function in developing organisms are missing. Here, we explore avenues to and from bivalency and propose that bivalent domains and associated chromatin-modifying complexes safeguard proper and robust differentiation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas/genética , Animales , Diferenciación Celular/genética , Metilación de ADN/genética , Células Madre Embrionarias/citología , Humanos
10.
Genes Dev ; 27(6): 639-53, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23468428

RESUMEN

The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 deposition through the deacetylation of H4K16Ac (acetylation of H4K16) and determines the levels of H4K20me2/3 throughout the cell cycle. SirT2 binds and deacetylates PR-Set7 at K90, modulating its chromatin localization. Consistently, SirT2 depletion significantly reduces PR-Set7 chromatin levels, alters the size and number of PR-Set7 foci, and decreases the overall mitotic deposition of H4K20me1. Upon stress, the interaction between SirT2 and PR-Set7 increases along with the H4K20me1 levels, suggesting a novel mitotic checkpoint mechanism. SirT2 loss in mice induces significant defects associated with defective H4K20me1-3 levels. Accordingly, SirT2-deficient animals exhibit genomic instability and chromosomal aberrations and are prone to tumorigenesis. Our studies suggest that the dynamic cross-talk between the environment and the genome during mitosis determines the fate of the subsequent cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Inestabilidad Genómica , Sirtuina 2/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Transformación Celular Neoplásica/genética , Cromatina/metabolismo , Daño del ADN/genética , Técnicas de Inactivación de Genes , Células HeLa , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Metilación , Ratones , Ratones Noqueados , Mitosis , Unión Proteica , Sirtuina 2/genética
11.
Genes Dev ; 26(24): 2749-62, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23249737

RESUMEN

Mixed-lineage leukemia 4 (MLL4; also called MLL2 and ALR) enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3), a hallmark of gene activation. However, how MLL4-deposited H3K4me3 interplays with other histone marks in epigenetic processes remains largely unknown. Here, we show that MLL4 plays an essential role in differentiating NT2/D1 stem cells by activating differentiation-specific genes. A tandem plant homeodomain (PHD(4-6)) of MLL4 recognizes unmethylated or asymmetrically dimethylated histone H4 Arg 3 (H4R3me0 or H4R3me2a) and is required for MLL4's nucleosomal methyltransferase activity and MLL4-mediated differentiation. Kabuki syndrome mutations in PHD(4-6) reduce PHD(4-6)'s binding ability and MLL4's catalytic activity. PHD(4-6)'s binding strength is inhibited by H4R3 symmetric dimethylation (H4R3me2s), a gene-repressive mark. The protein arginine methyltransferase 7 (PRMT7), but not PRMT5, represses MLL4 target genes by up-regulating H4R3me2s levels and antagonizes MLL4-mediated differentiation. Consistently, PRMT7 knockdown increases MLL4-catalyzed H3K4me3 levels. During differentiation, decreased H4R3me2s levels are associated with increased H3K4me3 levels at a cohort of genes, including many HOXA and HOXB genes. These findings indicate that the trans-tail inhibition of MLL4-generated H3K4me3 by PRMT7-regulated H4R3me2s may result from H4R3me2s's interference with PHD(4-6)'s binding activity and is a novel epigenetic mechanism that underlies opposing effects of MLL4 and PRMT7 on cellular differentiation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Metilación , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/citología , Unión Proteica , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/genética , Células Madre/citología
12.
Genes Dev ; 25(2): 137-52, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21245167

RESUMEN

Cytosine DNA methylation is evolutionarily ancient, and in eukaryotes this epigenetic modification is associated with gene silencing. Proteins with SRA (SET- or RING-associated) methyl-binding domains are required for the establishment and/or maintenance of DNA methylation in both plants and mammals. The 5-methyl-cytosine (5mC)-binding specificity of several SRA domains have been characterized, and each one has a preference for DNA methylation in different sequence contexts. Here we demonstrate through mobility shift assays and calorimetric measurements that the SU(VAR)3-9 HOMOLOG 5 (SUVH5) SRA domain differs from other SRA domains in that it can bind methylated DNA in all contexts to similar extents. Crystal structures of the SUVH5 SRA domain bound to 5mC-containing DNA in either the fully or hemimethylated CG context or the methylated CHH context revealed a dual flip-out mechanism where both the 5mC and a base (5mC, C, or G, respectively) from the partner strand are simultaneously extruded from the DNA duplex and positioned within binding pockets of individual SRA domains. Our structure-based in vivo studies suggest that a functional SUVH5 SRA domain is required for both DNA methylation and accumulation of the H3K9 dimethyl modification in vivo, suggesting a role for the SRA domain in recruitment of SUVH5 to genomic loci.


Asunto(s)
5-Metilcitosina , Arabidopsis/metabolismo , Metilación de ADN , Histonas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Arabidopsis/genética , Calorimetría , ADN/química , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Metiltransferasas/genética , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína
13.
J Neurochem ; 137(2): 266-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26801522

RESUMEN

The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Adhesión Celular/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Zinc/farmacología , Precursor de Proteína beta-Amiloide/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Femenino , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Fotoblanqueo , Ratas , Ratas Sprague-Dawley , Transfección
14.
J Biol Chem ; 289(27): 19019-30, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24855651

RESUMEN

The amyloid precursor protein (APP) and the APP-like proteins 1 and 2 (APLP1 and APLP2) are a family of multidomain transmembrane proteins possessing homo- and heterotypic contact sites in their ectodomains. We previously reported that divalent metal ions dictate the conformation of the extracellular APP E2 domain (Dahms, S. O., Könnig, I., Roeser, D., Gührs, K.-H., Mayer, M. C., Kaden, D., Multhaup, G., and Than, M. E. (2012) J. Mol. Biol. 416, 438-452), but unresolved is the nature and functional importance of metal ion binding to APLP1 and APLP2. We found here that zinc ions bound to APP and APLP1 E2 domains and mediated their oligomerization, whereas the APLP2 E2 domain interacted more weakly with zinc possessing a less surface-exposed zinc-binding site, and stayed monomeric. Copper ions bound to E2 domains of all three proteins. Fluorescence resonance energy transfer (FRET) analyses examined the effect of metal ion binding to APP and APLPs in the cellular context in real time. Zinc ions specifically induced APP and APLP1 oligomerization and forced APLP1 into multimeric clusters at the plasma membrane consistent with zinc concentrations in the blood and brain. The observed effects were mediated by a novel zinc-binding site within the APLP1 E2 domain as APLP1 deletion mutants revealed. Based upon its cellular localization and its dominant response to zinc ions, APLP1 is mainly affected by extracellular zinc among the APP family proteins. We conclude that zinc binding and APP/APLP oligomerization are intimately linked, and we propose that this represents a novel mechanism for regulating APP/APLP protein function at the molecular level.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Multimerización de Proteína , Zinc/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cobre/metabolismo , Células HEK293 , Humanos , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Zinc/farmacología
15.
Nature ; 461(7265): 762-7, 2009 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-19767730

RESUMEN

Polycomb group proteins have an essential role in the epigenetic maintenance of repressive chromatin states. The gene-silencing activity of the Polycomb repressive complex 2 (PRC2) depends on its ability to trimethylate lysine 27 of histone H3 (H3K27) by the catalytic SET domain of the EZH2 subunit, and at least two other subunits of the complex: SUZ12 and EED. Here we show that the carboxy-terminal domain of EED specifically binds to histone tails carrying trimethyl-lysine residues associated with repressive chromatin marks, and that this leads to the allosteric activation of the methyltransferase activity of PRC2. Mutations in EED that prevent it from recognizing repressive trimethyl-lysine marks abolish the activation of PRC2 in vitro and, in Drosophila, reduce global methylation and disrupt development. These findings suggest a model for the propagation of the H3K27me3 mark that accounts for the maintenance of repressive chromatin domains and for the transmission of a histone modification from mother to daughter cells.


Asunto(s)
Cromatina/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Silenciador del Gen , Histonas/química , Histonas/metabolismo , Proteínas Represoras/metabolismo , Regulación Alostérica , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Activación Enzimática , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Metilación , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Complejo Represivo Polycomb 2 , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Especificidad por Sustrato
16.
Sci Adv ; 9(39): eadg1936, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774033

RESUMEN

Human pluripotent stem cells (hPSCs) are of fundamental relevance in regenerative medicine. Naïve hPSCs hold promise to overcome some of the limitations of conventional (primed) hPSCs, including recurrent epigenetic anomalies. Naïve-to-primed transition (capacitation) follows transcriptional dynamics of human embryonic epiblast and is necessary for somatic differentiation from naïve hPSCs. We found that capacitated hPSCs are transcriptionally closer to postimplantation epiblast than conventional hPSCs. This prompted us to comprehensively study epigenetic and related transcriptional changes during capacitation. Our results show that CpG islands, gene regulatory elements, and retrotransposons are hotspots of epigenetic dynamics during capacitation and indicate possible distinct roles of specific epigenetic modifications in gene expression control between naïve and primed hPSCs. Unexpectedly, PRC2 activity appeared to be dispensable for the capacitation. We find that capacitated hPSCs acquire an epigenetic state similar to conventional hPSCs. Significantly, however, the X chromosome erosion frequently observed in conventional female hPSCs is reversed by resetting and subsequent capacitation.


Asunto(s)
Células Madre Pluripotentes , Humanos , Femenino , Diferenciación Celular/genética , Embrión de Mamíferos , Epigénesis Genética
17.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37503143

RESUMEN

Epigenetic inheritance refers to the faithful replication of DNA methylation and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferases, unless they are remodeled by DECREASE IN DNA METHYLATION1 (DDM1 Lsh/HELLS ), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.3 for the replicative variant H3.1 during the cell cycle. In ddm1 mutants, DNA methylation can be restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals direct engagement at SHL2 with histone H3.3 at or near variant residues required for assembly, as well as with the deacetylated H4 tail. An N-terminal autoinhibitory domain binds H2A variants to allow remodeling, while a disulfide bond in the helicase domain is essential for activity in vivo and in vitro . We show that differential remodeling of H3 and H2A variants in vitro reflects preferential deposition in vivo . DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1 Dnmt1 . DDM1 localization to the chromosome is blocked by H4K16 acetylation, which accumulates at DDM1 targets in ddm1 mutants, as does the sperm cell specific H3.3 variant MGH3 in pollen, which acts as a placeholder nucleosome in the germline and contributes to epigenetic inheritance.

18.
Methods Mol Biol ; 2529: 43-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733009

RESUMEN

Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues in histone as well as nonhistone substrates. In vitro histone methyltransferase assays have been instrumental in identifying HMTs, and they continue to be invaluable tools for the study of these important enzymes, revealing novel substrates and modes of regulation.Here we describe a universal protocol to examine HMT activity in vitro that can be adapted to a range of HMTs, substrates, and experimental objectives. We provide protocols for the detection of activity based on incorporation of 3H-labeled methyl groups from S-adenosylmethionine (SAM), methylation-specific antibodies, and quantification of the reaction product S-adenosylhomocysteine (SAH).


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Procesamiento Proteico-Postraduccional , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/química , Histonas/metabolismo , Metilación , S-Adenosilmetionina/metabolismo
19.
Cell Rep ; 38(7): 110357, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172149

RESUMEN

Histone modifications impact final splicing decisions. However, there is little evidence of the driving role of these marks in inducing cell-specific splicing changes. Using CRISPR epigenome editing tools, we show in an epithelial-to-mesenchymal cell reprogramming system (epithelial-to-mesenchymal transition [EMT]) that a single change in H3K27ac or H3K27me3 levels right at the alternatively spliced exon is necessary and sufficient to induce a splicing change capable of recapitulating important aspects of EMT, such as cell motility and invasiveness. This histone-mark-dependent splicing effect is highly dynamic and mediated by direct recruitment of the splicing regulator PTB to its RNA binding sites. These results support a role for H3K27 marks in inducing a change in the cell's phenotype via regulation of alternative splicing. We propose the dynamic nature of chromatin as a rapid and reversible mechanism to coordinate the splicing response to cell-extrinsic cues, such as induction of EMT.


Asunto(s)
Empalme Alternativo/genética , Transición Epitelial-Mesenquimal/genética , Código de Histonas/genética , Acetilación , Secuencia de Bases , Cateninas/metabolismo , Línea Celular , Cromatina/metabolismo , Exones/genética , Femenino , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Tiempo , Catenina delta
20.
Science ; 375(6586): 1281-1286, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298257

RESUMEN

The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. We found that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed histone H3 lysine 27 monomethylation in plants depends on H3.1, TSK, and DNA polymerase theta (Pol θ). This work reveals an H3.1-specific function during replication and a common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone monomethyltransferases and reading of the H3.1 variant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reparación del ADN , Replicación del ADN , ADN de Plantas/metabolismo , Histonas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Genoma de Planta , Inestabilidad Genómica , Histonas/química , Lisina/metabolismo , Metilación , Metiltransferasas/genética , Mutación , Dominios y Motivos de Interacción de Proteínas , ADN Polimerasa theta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA