Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Dev Biol ; 504: 128-136, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37805104

RESUMEN

Transcriptional responses to the Hedgehog (HH) signaling pathway are primarily modulated by GLI repression in the mouse limb. Previous studies suggested a role for the BAF chromatin remodeling complex in mediating GLI repression. Consistent with this possibility, the core BAF complex protein SMARCC1 is present at most active limb enhancers including the majority of GLI enhancers. However, in contrast to GLI repression which reduces chromatin accessibility, SMARCC1 maintains chromatin accessibility at most enhancers, including those bound by GLI. Moreover, SMARCC1 binding at GLI-regulated enhancers occurs independently of GLI3. Consistent with previous studies, some individual GLI target genes are mis-regulated in Smarcc1 conditional knockouts, though most GLI target genes are unaffected. Moreover, SMARCC1 is not necessary for mediating constitutive GLI repression in HH mutant limb buds. We conclude that SMARCC1 does not mediate GLI3 repression, which we propose utilizes alternative chromatin remodeling complexes.


Asunto(s)
Cromatina , Esbozos de los Miembros , Animales , Ratones , Cromatina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteína Gli3 con Dedos de Zinc/metabolismo
2.
Bioessays ; 44(12): e2200139, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251875

RESUMEN

Hedgehog (HH) signaling is a conserved pathway that drives developmental growth and is essential for the formation of most organs. The expression of HH target genes is regulated by a dual switch mechanism where GLI proteins function as bifunctional transcriptional activators (in the presence of HH signaling) and transcriptional repressors (in the absence of HH signaling). This results in a tight control of GLI target gene expression during rapidly changing levels of pathway activity. It has long been presumed that GLI proteins also repress target genes prior to the initial expression of HH in a given tissue. This idea forms the basis for the limb bud pre-patterning model for regulating digit number. Recent findings indicate that GLI repressor proteins are indeed present prior to HH signaling but contrary to this model, GLI proteins are inert as they do not regulate transcriptional responses or enhancer chromatin modifications at this time. These findings suggest that GLI transcriptional repressor activity is not a default state as assumed, but is itself regulated in an unknown fashion. We discuss these findings and their implications for understanding pre-patterning, digit regulation, and HH-driven disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Factores de Transcripción/metabolismo , Transducción de Señal/fisiología , Expresión Génica
3.
Dev Biol ; 456(2): 154-163, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442442

RESUMEN

During skeletal development, limb progenitors become specified as chondrocytes and subsequently differentiate into specialized cartilage compartments. We previously showed that the arginine dimethyl transferase, PRMT5, is essential for regulating the specification of progenitor cells into chondrocytes within early limb buds. Here, we report that PRMT5 regulates the survival of a separate progenitor domain that gives rise to the patella. Independent of its role in knee development, PRMT5 regulates several distinct types of chondrocyte differentiation within the long bones. Chondrocytes lacking PRMT5 have a striking blockage in hypertrophic chondrocyte differentiation and are marked by abnormal gene expression. PRMT5 remains important for articular cartilage and hypertrophic cell identity during adult stages, indicating an ongoing role in homeostasis of these tissues. We conclude that PRMT5 is required for distinct steps of early and late chondrogenic specialization and is thus a critical component of multiple aspects of long bone development and maintenance.


Asunto(s)
Cartílago/metabolismo , Rótula/embriología , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Desarrollo Óseo , Huesos/metabolismo , Cartílago/embriología , Cartílago Articular/citología , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrogénesis/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Esbozos de los Miembros , Masculino , Ratones , Proteína-Arginina N-Metiltransferasas/genética , Células Madre/citología
4.
Development ; 143(24): 4608-4619, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27827819

RESUMEN

During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis.


Asunto(s)
Cartílago/citología , Condrogénesis/genética , Células Madre Embrionarias/metabolismo , Miembro Anterior/embriología , Esbozos de los Miembros/embriología , Proteína-Arginina N-Metiltransferasas/genética , Animales , Apoptosis/genética , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Miembro Anterior/anomalías , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética
6.
Nucleic Acids Res ; 44(1): e8, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26350211

RESUMEN

Gene Set Context Analysis (GSCA) is an open source software package to help researchers use massive amounts of publicly available gene expression data (PED) to make discoveries. Users can interactively visualize and explore gene and gene set activities in 25,000+ consistently normalized human and mouse gene expression samples representing diverse biological contexts (e.g. different cells, tissues and disease types, etc.). By providing one or multiple genes or gene sets as input and specifying a gene set activity pattern of interest, users can query the expression compendium to systematically identify biological contexts associated with the specified gene set activity pattern. In this way, researchers with new gene sets from their own experiments may discover previously unknown contexts of gene set functions and hence increase the value of their experiments. GSCA has a graphical user interface (GUI). The GUI makes the analysis convenient and customizable. Analysis results can be conveniently exported as publication quality figures and tables. GSCA is available at https://github.com/zji90/GSCA. This software significantly lowers the bar for biomedical investigators to use PED in their daily research for generating and screening hypotheses, which was previously difficult because of the complexity, heterogeneity and size of the data.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica/métodos , Algoritmos , Animales , Conjuntos de Datos como Asunto , Humanos , Programas Informáticos
7.
Genes Dev ; 24(3): 312-26, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20123909

RESUMEN

In embryonic stem (ES) cells, a well-characterized transcriptional network promotes pluripotency and represses gene expression required for differentiation. In comparison, the transcriptional networks that promote differentiation of ES cells and the blastocyst inner cell mass are poorly understood. Here, we show that Sox17 is a transcriptional regulator of differentiation in these pluripotent cells. ES cells deficient in Sox17 fail to differentiate into extraembryonic cell types and maintain expression of pluripotency-associated transcription factors, including Oct4, Nanog, and Sox2. In contrast, forced expression of Sox17 down-regulates ES cell-associated gene expression and directly activates genes functioning in differentiation toward an extraembryonic endoderm cell fate. We show these effects of Sox17 on ES cell gene expression are mediated at least in part through a competition between Sox17 and Nanog for common DNA-binding sites. By elaborating the function of Sox17, our results provide insight into how the transcriptional network promoting ES cell self-renewal is interrupted, allowing cellular differentiation.


Asunto(s)
Diferenciación Celular , Linaje de la Célula/genética , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/metabolismo , Factores de Transcripción SOXF/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Proteínas HMGB/genética , Ratones , Factores de Transcripción SOXF/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Biol Chem ; 291(13): 7171-82, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26797124

RESUMEN

The Hedgehog (HH) signaling pathway is essential for the maintenance and response of several types of stem cells. To study the transcriptional response of stem cells to HH signaling, we searched for proteins binding to GLI proteins, the transcriptional effectors of the HH pathway in mouse embryonic stem (ES) cells. We found that both GLI3 and GLI1 bind to the pluripotency factor NANOG. The ectopic expression of NANOG inhibits GLI1-mediated transcriptional responses in a dose-dependent fashion. In differentiating ES cells, the presence of NANOG reduces the transcriptional response of cells to HH. Finally, we found thatGli1andNanogare co-expressed in ES cells at high levels. We propose that NANOG acts as a negative feedback component that provides stem cell-specific regulation of the HH pathway.


Asunto(s)
Proteínas Hedgehog/genética , Proteínas de Homeodominio/genética , Factores de Transcripción de Tipo Kruppel/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Diferenciación Celular , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células 3T3 NIH , Proteína Homeótica Nanog , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Transducción de Señal , Transcripción Genética , Proteína con Dedos de Zinc GLI1 , Proteína Gli3 con Dedos de Zinc
9.
Development ; 141(9): 1906-14, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24700818

RESUMEN

The transcriptional response to the Hedgehog (Hh) pathway is mediated by Gli proteins, which function as context-dependent transcriptional activators or repressors. However, the mechanism by which Gli proteins regulate their target genes is poorly understood. Here, we have performed the first genetic characterization of a Gli-dependent cis-regulatory module (CRM), focusing on its regulation of Grem1 in the mouse limb bud. The CRM, termed GRE1 (Gli responsive element 1), can act as both an enhancer and a silencer. The enhancer activity requires sustained Hh signaling. As a Gli-dependent silencer, GRE1 prevents ectopic transcription of Grem1 driven through additional CRMs. In doing so, GRE1 works with additional GREs to robustly regulate Grem1. We suggest that multiple Gli CRMs may be a general mechanism for mediating a robust transcriptional response to the Hh pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Proteínas Represoras/metabolismo , Vertebrados/embriología , Vertebrados/genética , Animales , Citocinas , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Modelos Biológicos , Transducción de Señal/genética , Factores de Tiempo , Proteína con Dedos de Zinc GLI1
10.
PLoS Genet ; 10(10): e1004604, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25356765

RESUMEN

The Second Heart Field (SHF) has been implicated in several forms of congenital heart disease (CHD), including atrioventricular septal defects (AVSDs). Identifying the SHF gene regulatory networks required for atrioventricular septation is therefore an essential goal for understanding the molecular basis of AVSDs. We defined a SHF Hedgehog-dependent gene regulatory network using whole genome transcriptional profiling and GLI-chromatin interaction studies. The Forkhead box transcription factors Foxf1a and Foxf2 were identified as SHF Hedgehog targets. Compound haploinsufficiency for Foxf1a and Foxf2 caused atrioventricular septal defects, demonstrating the biological relevance of this regulatory network. We identified a Foxf1a cis-regulatory element that bound the Hedgehog transcriptional regulators GLI1 and GLI3 and the T-box transcription factor TBX5 in vivo. GLI1 and TBX5 synergistically activated transcription from this cis-regulatory element in vitro. This enhancer drove reproducible expression in vivo in the posterior SHF, the only region where Gli1 and Tbx5 expression overlaps. Our findings implicate Foxf genes in atrioventricular septation, describe the molecular underpinnings of the genetic interaction between Hedgehog signaling and Tbx5, and establish a molecular model for the selection of the SHF gene regulatory network for cardiac septation.


Asunto(s)
Factores de Transcripción Forkhead/genética , Defectos de los Tabiques Cardíacos/genética , Corazón/fisiopatología , Proteínas de Dominio T Box/genética , Animales , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Defectos de los Tabiques Cardíacos/patología , Proteínas Hedgehog/genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Proteínas del Tejido Nervioso/genética , Transducción de Señal , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1 , Proteína Gli3 con Dedos de Zinc
11.
Semin Cell Dev Biol ; 33: 73-80, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24862856

RESUMEN

The Hedgehog (Hh) pathway plays conserved roles in regulating a diverse spectrum of developmental processes. In some developmental contexts, a gradient of Hh protein specifies multiple cell types in a dose-dependent fashion, thereby acting as a morphogen. Hh signaling ultimately acts on the transcriptional level through GLI proteins. In the presence of Hh signaling full length GLI proteins act as transcriptional activators of target genes. Conversely, in the absence of Hh, GLI proteins act as transcriptional repressors. This review will highlight mechanisms contributing to how graded Hh signaling might translate to differential GLI activity and be interpreted into distinct transcriptional responses.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/fisiología , Animales , Sitios de Unión , Tipificación del Cuerpo , Especificidad de Órganos , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal , Transcripción Genética
12.
Dev Biol ; 406(1): 92-103, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26238476

RESUMEN

GLI proteins convert Sonic hedgehog (Shh) signaling into a transcriptional output in a tissue-specific fashion. The Shh pathway has been extensively studied in the limb bud, where it helps regulate growth through a SHH-FGF feedback loop. However, the transcriptional response is still poorly understood. We addressed this by determining the gene expression patterns of approximately 200 candidate GLI-target genes and identified three discrete SHH-responsive expression domains. GLI-target genes expressed in the three domains are predominately regulated by derepression of GLI3 but have different temporal requirements for SHH. The GLI binding regions associated with these genes harbor both distinct and common DNA motifs. Given the potential for interaction between the SHH and FGF pathways, we also measured the response of GLI-target genes to inhibition of FGF signaling and found the majority were either unaffected or upregulated. These results provide the first characterization of the spatiotemporal response of a large group of GLI-target genes and lay the foundation for a systems-level understanding of the gene regulatory networks underlying SHH-mediated limb patterning.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Esbozos de los Miembros/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Sitios de Unión/genética , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Esbozos de los Miembros/citología , Ratones , Ratones Transgénicos , Unión Proteica/genética , Estructura Terciaria de Proteína , Transducción de Señal/fisiología , Activación Transcripcional , Proteína Gli3 con Dedos de Zinc
13.
Proc Natl Acad Sci U S A ; 110(2): 549-54, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23267094

RESUMEN

Maternal supplementation with folic acid is known to reduce the incidence of neural tube defects (NTDs) by as much as 70%. Despite the strong clinical link between folate and NTDs, the biochemical mechanisms through which folic acid acts during neural tube development remain undefined. The Mthfd1l gene encodes a mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase, termed MTHFD1L. This gene is expressed in adults and at all stages of mammalian embryogenesis with localized regions of higher expression along the neural tube, developing brain, craniofacial structures, limb buds, and tail bud. In both embryos and adults, MTHFD1L catalyzes the last step in the flow of one-carbon units from mitochondria to cytoplasm, producing formate from 10-formyl-THF. To investigate the role of mitochondrial formate production during embryonic development, we have analyzed Mthfd1l knockout mice. All embryos lacking Mthfd1l exhibit aberrant neural tube closure including craniorachischisis and exencephaly and/or a wavy neural tube. This fully penetrant folate-pathway mouse model does not require feeding a folate-deficient diet to cause this phenotype. Maternal supplementation with sodium formate decreases the incidence of NTDs and partially rescues the growth defect in embryos lacking Mthfd1l. These results reveal the critical role of mitochondrially derived formate in mammalian development, providing a mechanistic link between folic acid and NTDs. In light of previous studies linking a common splice variant in the human MTHFD1L gene with increased risk for NTDs, this mouse model provides a powerful system to help elucidate the specific metabolic mechanisms that underlie folate-associated birth defects, including NTDs.


Asunto(s)
Anomalías Múltiples/genética , Aminohidrolasas/genética , Anomalías Craneofaciales/genética , Desarrollo Embrionario/genética , Formiato-Tetrahidrofolato Ligasa/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Complejos Multienzimáticos/genética , Defectos del Tubo Neural/genética , Aminohidrolasas/deficiencia , Animales , Cartilla de ADN/genética , Desarrollo Embrionario/efectos de los fármacos , Formiato-Tetrahidrofolato Ligasa/deficiencia , Formiatos/administración & dosificación , Formiatos/farmacología , Eliminación de Gen , Genotipo , Immunoblotting , Redes y Vías Metabólicas/fisiología , Metilenotetrahidrofolato Deshidrogenasa (NADP)/deficiencia , Ratones , Ratones Noqueados , Complejos Multienzimáticos/deficiencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Dev Biol ; 393(2): 270-281, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25034710

RESUMEN

Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 7/genética , Esbozos de los Miembros/embriología , Polidactilia/genética , Animales , Apoptosis , Proteína Morfogenética Ósea 2/antagonistas & inhibidores , Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Proteína Morfogenética Ósea 7/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/genética , Proliferación Celular , Condrogénesis/genética , Citocinas , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Mesodermo/embriología , Ratones , Ratones Transgénicos , Mutación , Polidactilia/embriología , Factor de Transcripción SOX9/biosíntesis , Transducción de Señal/genética
15.
Dev Dyn ; 243(7): 928-36, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24633820

RESUMEN

BACKGROUND: The vertebrate limb bud is a well-established system for studying the mechanisms driving growth and patterning of an embryonic tissue. However, approaches for manipulating gene expression are currently limited to time-consuming methods. Culturing primary limb bud cells could potentially be used as a quicker assay. However, limb cells in culture quickly differentiate into cartilage under normal conditions, and approaches delivering DNA and siRNA into primary limb cells in culture are limited. These technical limitations have restricted the utility of limb buds for investigating problems that require higher-throughput approaches. RESULTS: In this report, we describe adaptations to a method for culturing primary limb bud cells in a pre-chondrogenic state, and generate a population of mouse primary limb cells that are responsive to Hedgehog (Hh) signaling. Hh-stimulated cells upregulate Hh target genes as well as an exogenous Hh-responsive reporter. We then describe a method for highly efficient delivery of plasmids and siRNAs into cultured primary limb bud cells in a 96-well format. CONCLUSIONS: Cultures of primary limb bud cells are amenable to gene manipulation under conditions that maintain the limb cells in an Hh-responsive, undifferentiated state. This approach provides a medium-throughput system to manipulate gene expression, and test DNA regulatory elements.


Asunto(s)
Esbozos de los Miembros/metabolismo , Animales , Células Cultivadas , Electroporación , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/citología , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Dev Biol ; 375(2): 160-71, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23313125

RESUMEN

Sonic hedgehog (Shh) signal, mediated by the Gli family of transcription factors, plays an essential role in the growth and patterning of the limb. Through analysis of the early limb bud transcriptome, we identified a posteriorly-enriched gene, Hyaluronic Acid Synthase 2 (Has2), which encodes a key enzyme for the synthesis of hyaluronan (HA), as a direct target of Gli transcriptional regulation during early mouse limb development. Has2 expression in the limb bud is lost in Shh null and expanded anteriorly in Gli3 mutants. We identified an ∼3kb Has2 promoter fragment that contains two strong Gli-binding consensus sequences, and mutation of either site abrogated the ability of Gli1 to activate Has2 promoter in a cell-based assay. Additionally, this promoter fragment is sufficient to direct expression of a reporter gene in the posterior limb mesenchyme. Chromatin immunoprecipitation of DNA-Gli3 protein complexes from limb buds indicated that Gli3 strongly binds to the Has2 promoter region, suggesting that Has2 is a direct transcriptional target of the Shh signaling pathway. We also showed that Has2 conditional mutant (Has2cko) hindlimbs display digit-specific patterning defects with longitudinally shifted phalangeal joints and impaired chondrogenesis. Has2cko limbs show less capacity for mesenchymal condensation with mislocalized distributions of chondroitin sulfate proteoglycans (CSPGs), aggrecan and link protein. Has2cko limb phenotype displays striking resemblance to mutants with defective chondroitin sulfation suggesting tight developmental control of HA on CSPG function. Together, our study identifies Has2 as a novel downstream target of Shh signaling required for joint patterning and chondrogenesis.


Asunto(s)
Tipificación del Cuerpo , Extremidades/embriología , Glucuronosiltransferasa/metabolismo , Proteínas Hedgehog/metabolismo , Articulaciones/embriología , Articulaciones/enzimología , Transducción de Señal , Agrecanos/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Condrogénesis/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucuronosiltransferasa/deficiencia , Glucuronosiltransferasa/genética , Hialuronano Sintasas , Ácido Hialurónico/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Regiones Promotoras Genéticas/genética , Proteoglicanos/metabolismo , Transducción de Señal/genética , Proteína Gli3 con Dedos de Zinc
17.
Nat Genet ; 37(12): 1323-32, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16311596

RESUMEN

Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Transducción de Señal/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Genes de Insecto , Genoma de los Insectos , Genómica , Proteínas Hedgehog , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Proteína Fosfatasa 2 , Interferencia de ARN , Empalme del ARN/genética , ARN Mensajero/genética
18.
Dev Biol ; 368(2): 165-80, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22683377

RESUMEN

The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Morfogénesis/genética , Animales , Tipificación del Cuerpo/genética , Humanos , Modelos Anatómicos , Modelos Genéticos
19.
Proc Natl Acad Sci U S A ; 107(21): 9736-41, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20460306

RESUMEN

Many genes initially identified for their roles in cell fate determination or signaling during development can have a significant impact on tumorigenesis. In the developing cerebellum, Sonic hedgehog (Shh) stimulates the proliferation of granule neuron precursor cells (GNPs) by activating the Gli transcription factors. Inappropriate activation of Shh target genes results in unrestrained cell division and eventually medulloblastoma, the most common pediatric brain malignancy. We find dramatic differences in the gene networks that are directly driven by the Gli1 transcription factor in GNPs and medulloblastoma. Gli1 binding location analysis revealed hundreds of genomic loci bound by Gli1 in normal and cancer cells. Only one third of the genes bound by Gli1 in GNPs were also bound in tumor cells. Correlation with gene expression levels indicated that 116 genes were preferentially transcribed in tumors, whereas 132 genes were target genes in both GNPs and medulloblastoma. Quantitative PCR and in situ hybridization for some putative target genes support their direct regulation by Gli. The results indicate that transformation of normal GNPs into deadly tumor cells is accompanied by a distinct set of Gli-regulated genes and may provide candidates for targeted therapies.


Asunto(s)
Transformación Celular Neoplásica/genética , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Transducción de Señal , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Unión Proteica , Activación Transcripcional , Proteína con Dedos de Zinc GLI1
20.
bioRxiv ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-36798239

RESUMEN

Transcriptional responses to the Hedgehog (HH) signaling pathway are primarily modulated by GLI repression in the mouse limb. Previous studies suggested a role for the BAF chromatin remodeling complex in mediating GLI repression. Consistent with this possibility, the core BAF complex protein SMARCC1 is present at most active limb enhancers including the majority of GLI enhancers. However, in contrast to GLI repression which reduces chromatin accessibility, SMARCC1 maintains chromatin accessibility at most enhancers, including those bound by GLI. Moreover, SMARCC1 binding at GLI-regulated enhancers occurs independently of GLI3. Consistent with previous studies, some individual GLI target genes are mis-regulated in Smarcc1 conditional knockouts, though most GLI target genes are unaffected. Moreover, SMARCC1 is not necessary for mediating constitutive GLI repression in HH mutant limb buds. We conclude that SMARCC1 does not mediate GLI3 repression, which we propose utilizes alternative chromatin remodeling complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA