RESUMEN
During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs) involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru). The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a) involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh). The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors.
Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Neuronas Receptoras Olfatorias/metabolismo , Factores de Transcripción/genética , Animales , Drosophila melanogaster , Femenino , MasculinoRESUMEN
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes , Neuronas Receptoras Olfatorias , Olfato/genética , Animales , Cadherinas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/crecimiento & desarrollo , Proteínas con Homeodominio LIM/genética , Red Nerviosa/crecimiento & desarrollo , Factores de Transcripción/genéticaRESUMEN
The process of how neuronal identity confers circuit organization is intricately related to the mechanisms underlying neurodegeneration and neuropathologies. Modeling this process, the olfactory circuit builds a functionally organized topographic map, which requires widely dispersed neurons with the same identity to converge their axons into one a class-specific neuropil, a glomerulus. In this article, we identified Fat2 (also known as Kugelei) as a regulator of class-specific axon organization. In fat2 mutants, axons belonging to the highest fat2-expressing classes present with a more severe phenotype compared to axons belonging to low fat2-expressing classes. In extreme cases, mutations lead to neural degeneration. Lastly, we found that Fat2 intracellular domain interactors, APC1/2 (Adenomatous polyposis coli) and dop (Drop out), likely orchestrate the cytoskeletal remodeling required for axon condensation. Altogether, we provide a potential mechanism for how cell surface proteins' regulation of cytoskeletal remodeling necessitates identity specific circuit organization.
RESUMEN
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Asunto(s)
Proteínas de Drosophila , Animales , Masculino , Proteínas de Drosophila/metabolismo , Conducta Sexual Animal/fisiología , Drosophila/genética , Feromonas/metabolismo , Células Receptoras Sensoriales/metabolismo , Expresión Génica , Drosophila melanogaster/genéticaRESUMEN
A detailed description of olfactory system development in ants reveals that - unlike in Drosophila and as in mammals - olfactory receptors may play a role, providing new insights into the developmental evolution of complex chemosensory systems.
Asunto(s)
Hormigas , Receptores Odorantes , Animales , Evolución Molecular , Proteínas de Insectos/genética , Insectos , Mamíferos , Receptores Odorantes/genéticaRESUMEN
Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.
Asunto(s)
Antenas de Artrópodos/embriología , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Organogénesis/genética , Transcriptoma , Animales , Mucosa Olfatoria/embriología , Neuronas Receptoras Olfatorias/metabolismo , Reproducibilidad de los ResultadosRESUMEN
Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO2 as well as the transcriptional profile of key developmental regulators of CO2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO2-evoked behavioral responses across species.
Asunto(s)
Antenas de Artrópodos/metabolismo , Conducta Animal/efectos de los fármacos , Dióxido de Carbono/farmacología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Animales , Antenas de Artrópodos/efectos de los fármacos , Antenas de Artrópodos/crecimiento & desarrollo , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Proteínas Nucleares/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Factores de Transcripción/genéticaRESUMEN
Detection of a broad range of chemosensory signals is necessary for the survival of multicellular organisms. Chemical signals are the main facilitators of foraging, escape, and social behaviors. To increase detection coverage, animal sensory systems have evolved to create a large number of neurons with highly specific functions. The olfactory system, much like the nervous system as a whole, is astonishingly diverse. The mouse olfactory system has millions of neurons with over a thousand classes, whereas the more compact Drosophila genome has approximately 80 odorant receptor genes that give rise to 50 neuronal classes and 1300 neurons in the adult.(4) Understanding how neuronal diversity is generated remains one of the central questions in developmental neurobiology. Here, we review the current knowledge on the development of the adult Drosophila olfactory system and the progress that has been made toward answering this central question.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/genética , Animales , Drosophila/genéticaRESUMEN
BACKGROUND: Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown. RESULTS: Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner. CONCLUSIONS: We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.