Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Langmuir ; 40(24): 12368-12380, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38834186

RESUMEN

Understanding the dynamics of drops on polymer-coated surfaces is crucial for optimizing applications such as self-cleaning materials or microfluidic devices. While the static and dynamic properties of deposited drops have been well characterized, a microscopic understanding of the underlying dynamics is missing. In particular, it is unclear how drop dynamics depends on the amount of uncross-linked chains in the brush, because experimental techniques fail to quantify those. Here we use coarse-grained simulations to study droplets moving on a lubricated polymer brush substrate under the influence of an external body force. The simulation model is based on the many body dissipative particle dynamics (MDPD) method and designed to mimic a system of water droplets on poly(dimethylsiloxane) (PDMS) brushes with chemically identical PDMS lubricant. In agreement with experiments, we find a sublinear power law dependence between the external force F and the droplet velocity v, F ∝ vα with α < 1; however, the exponents differ (α ∼ 0.6-0.7 in simulations versus α ∼ 0.25 in experiments). With increasing velocity, the droplets elongate and the receding contact angle decreases, whereas the advancing contact angle remains roughly constant. Analyzing the flow profiles inside the droplet reveals that the droplets do not slide but roll, with vanishing slip at the substrate surface. Surprisingly, adding lubricant has very little effect on the effective friction force between the droplet and the substrate, even though it has a pronounced effect on the size and structure of the wetting ridge, especially above the cloaking transition.

2.
Langmuir ; 40(9): 4801-4810, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386540

RESUMEN

Strongly attractive forces act between superhydrophobic surfaces across water due to the formation of a bridging gas capillary. Upon separation, the attraction can range up to tens of micrometers as the gas capillary grows, while gas molecules accumulate in the capillary. We argue that most of these molecules come from the pre-existing gaseous layer found at and within the superhydrophobic coating. In this study, we investigate how the capillary size and the resulting capillary forces are affected by the thickness of the gaseous layer. To this end, we prepared superhydrophobic coatings with different thicknesses by utilizing different numbers of coating cycles of a liquid flame spraying technique. Laser scanning confocal microscopy confirmed an increase in gas layer thickness with an increasing number of coating cycles. Force measurements between such coatings and a hydrophobic colloidal probe revealed attractive forces caused by bridging gas capillaries, and both the capillary size and the range of attraction increased with increasing thickness of the pre-existing gas layer. Hence, our data suggest that the amount of available gas at and in the superhydrophobic coating determines the force range and capillary growth.

3.
Soft Matter ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952198

RESUMEN

Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.

4.
Nano Lett ; 23(8): 3116-3121, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039578

RESUMEN

Methods for fabricating super-liquid-repellent surfaces have typically relied on perfluoroalkyl substances. However, growing concerns about the environmental and health effects of perfluorinated compounds have caused increased interest in fluorine-free alternatives. Polydimethylsiloxane (PDMS) is most promising. In contrast to fluorinated surfaces, PDMS-coated surfaces showed only superhydrophobicity. This raises the question whether the poor liquid repellency is caused by PDMS interacting with the probe liquid or whether it results from inappropriate surface morphology. Here, we demonstrate that a well-designed two-tier structure consisting of silicon dioxide nanoparticles combined with surface-tethered PDMS chains allows super-liquid-repellency toward a range of low surface tension liquids. Drops of water-ethanol solutions with surface tensions as low as 31.0 mN m-1 easily roll and bounce off optimized surface structures. Friction force measurements demonstrate excellent surface homogeneity and easy mobility of drops. Our work shows that fluorine-free super-liquid-repellent surfaces can be achieved using scalable fabrication methods and environmentally friendly surface functionalization.

5.
Phys Rev Lett ; 130(5): 058205, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800444

RESUMEN

Drops in contact with swollen, elastomeric substrates can induce a capillary mediated phase separation in wetting ridges. Using confocal microscopy, we visualize phase separation of oligomeric silicone oil from a cross-linked silicone network during steady-state sliding of water drops. We find an inverse relationship between the oil tip height and the drop sliding speed, which is rationalized by competing transport timescales of the oil molecules: separation rate versus drop-advection speed. Separation rates in highly swollen networks are as fast as diffusion in pure melts.

6.
Langmuir ; 38(48): 14635-14643, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399702

RESUMEN

Wetting imperfections are omnipresent on surfaces. They cause contact angle hysteresis and determine the wetting dynamics. Still, existing techniques (e.g., contact angle goniometry) are not sufficient to localize inhomogeneities and image wetting variations. We overcome these limitations through scanning drop friction force microscopy (sDoFFI). In sDoFFI, a 15 µL drop of Milli-Q water is raster-scanned over a surface. The friction force (lateral adhesion force) acting on the moving contact line is plotted against the drop position. Using sDoFFI, we obtained 2D wetting maps of the samples having sizes in the order of several square centimeters. We mapped areas with distinct wetting properties such as those present on a natural surface (e.g., a rose petal), a technically relevant superhydrophobic surface (e.g., Glaco paint), and an in-house prepared model of inhomogeneous surfaces featuring defined areas with low and high contact angle hysteresis. sDoFFI detects features that are smaller than 0.5 mm in size. Furthermore, we quantified the sliding behavior of drops across the boundary separating areas with different contact angles on the model sample. The sliding of a drop across this transition line follows a characteristic stick-slip motion. We use the variation in force signals, advancing and receding contact line velocities, and advancing and receding contact angles to identify zones of stick and slip. When scanning the drop from low to high contact angle hysteresis, the drop undergoes a stick-slip-stick-slip motion at the interline. Sliding from high to low contact angle hysteresis is characterized by the slip-stick-slip motion. The sDoFFI is a new tool for 2D characterization of wetting properties, which is applicable to laboratory-based samples but also characterizes biological and commercial surfaces.

7.
Soft Matter ; 18(2): 365-371, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34889343

RESUMEN

We investigate the shrinkage of a surface-grafted water-swollen hydrogel under shear flows of oils by laser scanning confocal microscopy. Interestingly, external shear flows of oil lead to linear dehydration and shrinkage of the hydrogel for all investigated flow conditions irrespective of the chemical nature of the hydrogel. The reason is that the finite solubility of water in oil removes water from the hydrogel continuously by diffusion. The flow advects the water-rich oil, as demonstrated by numerical solutions of the underlying convection-diffusion equation. In line with this hypothesis, shear does not cause gel shrinkage for water-saturated oils or non-solvents. The solubility of water in the oil will tune the dehydration dynamics.

8.
Proc Natl Acad Sci U S A ; 116(5): 1520-1525, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30655339

RESUMEN

Interfaces between water and silicates are ubiquitous and relevant for, among others, geochemistry, atmospheric chemistry, and chromatography. The molecular-level details of water organization at silica surfaces are important for a fundamental understanding of this interface. While silica is hydrophilic, weakly hydrogen-bonded OH groups have been identified at the surface of silica, characterized by a high O-H stretch vibrational frequency. Here, through a combination of experimental and theoretical surface-selective vibrational spectroscopy, we demonstrate that these OH groups originate from very weakly hydrogen-bonded water molecules at the nominally hydrophilic silica interface. The properties of these OH groups are very similar to those typically observed at hydrophobic surfaces. Molecular dynamics simulations illustrate that these weakly hydrogen-bonded water OH groups are pointing with their hydrogen atom toward local hydrophobic sites consisting of oxygen bridges of the silica. An increased density of these molecular hydrophobic sites, evident from an increase in weakly hydrogen-bonded water OH groups, correlates with an increased macroscopic contact angle.

9.
Chem Soc Rev ; 50(18): 10674-10699, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34369513

RESUMEN

(Photo)electrolysis of water or gases with water to species serving as industrial feedstocks and energy carriers, such as hydrogen, ammonia, ethylene, propanol, etc., has drawn tremendous attention. Moreover, these processes can often be driven by renewable energy under ambient conditions as a sustainable alternative to traditional high-temperature and high-pressure synthesis methods. In addition to the extensive studies on catalyst development, increasing attention has been paid to the regulation of gas transport/diffusion behaviors during gas-involving (photo)electrocatalytic reactions towards the goal of creating industrially viable catalytic systems with high reaction rates, excellent long-term stabilities and near-unity selectivities. Biomimetic surfaces and systems with special wetting capabilities and structural advantages can shed light on the future design of (photo)electrodes and address long-standing challenges. This article is dedicated to bridging the fields of wetting and catalysis by reviewing the cutting-edge design methodologies of both gas-evolving and gas-consuming (photo)electrocatalytic systems. We first introduce the fundamentals of various in-air/underwater wetting states and their corresponding bioinspired structural properties. The relationship amongst the bubble transport behavior, wettability, and porosity/tortuosity is also discussed. Next, the latest implementations of wetting-related design principles for gas-evolving reactions (i.e. the hydrogen evolution reaction and oxygen evolution reaction) and gas-consuming reactions (i.e. the oxygen reduction reaction and CO2 reduction reaction) are summarized. For photoelectrode designs, additional factors are taken into account, such as light absorption and the separation, transport and recombination of photoinduced electrons and holes. The influences of wettability and 3D structuring of (photo)electrodes on the catalytic activity, stability and selectivity are analyzed to reveal the underlying mechanisms. Finally, remaining questions and related future perspectives are outlined.

10.
Langmuir ; 37(44): 13012-13017, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34710321

RESUMEN

The force required to detach a particle from a liquid-fluid interface is a direct measure of the capillary adhesion between the particle and the interface. Analytical expressions for the detachment force are available but are limited to nonrotating particles. In this work, we derive analytical expressions for the force required to detach a rotating spherical particle from a liquid-fluid interface. Our theory predicts that the rotation reduces the detachment force when there is a finite contact angle hysteresis between the particle and the liquid. For example, the force required to detach a particle with an advancing contact angle of 120° and a receding contact angle of 80° (e.g., polydimethylsiloxane particle at a water-air interface) is expected to be 25% lower when the particle rotates while it is detached.

11.
Langmuir ; 37(24): 7457-7463, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34115495

RESUMEN

Small particles attach to liquid-fluid interfaces due to capillary forces. The influence of rotation on the capillary force is largely unexplored, despite being relevant whenever particles roll at a liquid-fluid interface or on a moist solid. Here, we demonstrate that due to contact angle hysteresis, a particle needs to overcome a resistive capillary torque to rotate at an interface. We derive a general model for the capillary torque on a spherical particle. The capillary torque is given by M = γRLk(cos ΘR - cos ΘA), where γ is the interfacial tension, R is the radius of the particle, L is the diameter of the contact line, k = 24/π3 is a geometrical constant, and ΘR and ΘA are the receding and advancing contact angles, respectively. The expression for the capillary torque (normalized by the radius of the particle) is equivalent to the expression for the friction force that a drop experiences when moving on a flat surface. Our theory predicts that capillary torque reduces the mobility of wet granular matter and prevents small (nano/micro) particles from rotating when they are in Brownian motion at an interface.

12.
Soft Matter ; 17(7): 1746-1755, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33400749

RESUMEN

To understand the removal of particles from surfaces by water drops, we used an inverted laser scanning confocal microscope to image the collision between a water drop and a particle on a flat polydimethylsiloxane (PDMS) surface. The dynamic drop-particle contact line was monitored by fixing the drop directly above the objective lens while moving the sample stage at well-defined speeds (10-500 µm s-1). The lateral force acting on the drop during the collision was measured as a function of speed, using a force sensor mounted on the microscope. Depending on the collision speed, the particle either stays attached at the rear of the drop or detaches from it. We propose a criterion to determine whether the particle remains attached to the drop based on the capillary and resistive forces acting on the particle during the collision. The forces measured when the particle crosses the air-water interface are compared to existing models. We adapted these to account for rolling of the particle. By comparing our experimental measurements with an analytical model for the capillary torque acting on a particle rolling at an interface, we provide detailed insights on the origins of the resistive force acting on the particle when it is pushed or pulled by the drop. A low friction force between the surface and the particle increases the likelihood of particle removal.

13.
Nano Lett ; 20(12): 8508-8515, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33206541

RESUMEN

Slippery lubricant-infused surfaces (SLIPS) have shown great promise for anti-frosting and anti-icing. However, small length scales associated with frost dendrites exert immense capillary suction pressure on the lubricant. This pressure depletes the lubricant film and is detrimental to the functionality of SLIPS. To prevent lubricant depletion, we demonstrate that interstitial spacing in SLIPS needs to be kept below those found in frost dendrites. Densely packed nanoparticles create the optimally sized nanointerstitial features in SLIPS (Nano-SLIPS). The capillary pressure stabilizing the lubricant in Nano-SLIPS balances or exceeds the capillary suction pressure by frost dendrites. We term this concept capillary balancing. Three-dimensional spatial analysis via confocal microscopy reveals that lubricants in optimally structured Nano-SLIPS are not affected throughout condensation (0 °C), extreme frosting (-20 °C to -100 °C), and traverse ice-shearing (-10 °C) tests. These surfaces preserve low ice adhesion (10-30 kPa) over 50 icing cycles, demonstrating a design principle for next-generation anti-icing surfaces.

14.
Nat Mater ; 18(9): 936-941, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31332340

RESUMEN

The directed, long-range and self-propelled transport of droplets on solid surfaces is crucial for many applications from water harvesting to bio-analysis1-9. Typically, preferential transport is achieved by topographic or chemical modulation of surface wetting gradients that break the asymmetric contact line and overcome the resistance force to move droplets along a particular direction10-16. Nonetheless, despite extensive progress, directional droplet transport is limited to low transport velocity or short transport distance. Here we report the high-velocity and ultralong transport of droplets elicited by surface charge density gradients printed on diverse substrates. We leverage the facile water droplet printing on superamphiphobic surfaces to create rewritable surface charge density gradients that stimulate droplet propulsion under ambient conditions17 and without the need for additional energy input. Our strategy provides a platform for programming the transport of droplets on flat, flexible and vertical surfaces that may be valuable for applications requiring a controlled movement of droplets17-19.

15.
Langmuir ; 36(16): 4416-4431, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32239949

RESUMEN

Silicones are usually considered to be inert and, thus, not reactive with surfaces. Here we show that the most common silicone, methyl-terminated polydimethylsiloxane, spontaneously and stably bonds on glass-and any other material with silicon oxide surface chemistry-even at room temperature. As a result, a 2-5 nm thick and transparent coating, which shows extraordinary nonstick properties toward polar and nonpolar liquids, ice, and even super glue, is formed. Ten microliter drops of various liquids slide off a coated glass when the sample is inclined by less than 10°. Ice adhesion strength on a coated glass is only 2.7 ± 0.6 kPa, that is, more than 98% less than ice adhesion on an uncoated glass. The mechanically stable coating can be easily applied by painting, spraying, or roll-coating. Notably, the reaction does not require any excess energy or solvents, nor does it induce hazardous byproducts, which makes it an ideal option for environmentally sustainable surface modification in a myriad of technological applications.

16.
Langmuir ; 36(26): 7236-7245, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32496071

RESUMEN

To better understand the wetting of cross-linked polydimethylsiloxane (PDMS), we measured advancing and receding contact angles of sessile water drops on cross-linked PDMS as a function of contact line velocity (up to 100 µm/s). Three types of samples were investigated: pristine PDMS, PDMS where oligomers were removed by toluene treatment, and PDMS with an enriched concentration of oligomers. Depending on the velocity of advancing contact lines and the contact time with water, different modes of wetting were observed: one with a relatively low contact angle hysteresis (Δθ ≈ 10°) and one with a larger hysteresis. We attribute the low hysteresis state, called the lubricated state, to the enrichment of free oligomers at the water-PDMS interface. The enrichment of oligomers is induced by drop contact. The kinetics of the transition to the lubricated state can be described by adaptation theory. PDMS adapts to the presence of water by an enrichment of free oligomers at the interface and a correlated reduction in interfacial tension.

17.
Phys Rev Lett ; 121(4): 048002, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095942

RESUMEN

The work required to detach microparticles from fluid interfaces depends on the shape of the liquid meniscus. However, measuring the capillary force on a single microparticle and simultaneously imaging the shape of the liquid meniscus has not yet been accomplished. To correlate force and shape, we combined a laser scanning confocal microscope with a colloidal probe setup. While moving a hydrophobic microsphere (radius 5-10 µm) in and out of a 2-5 µm thick glycerol film, we simultaneously measured the force and imaged the shape of the liquid meniscus. In this way we verified the fundamental equations [D. F. James, J. Fluid Mech. 63, 657 (1974)JFLSA70022-112010.1017/S0022112074002126; A. D. Scheludko, A. D. Nikolov, Colloid Polymer Sci. 253, 396 (1975)] that describe the adhesion of particles in flotation, deinking of paper, the stability of Pickering emulsions and particle-stabilized foams. Comparing experimental results with theory showed, however, that the receding contact angle has to be applied, which can be much lower than the static contact angle obtained right after jump in of the particle.

18.
Langmuir ; 34(38): 11292-11304, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30110544

RESUMEN

Many surfaces reversibly change their structure and interfacial energy upon being in contact with a liquid. Such surfaces adapt to a specific liquid. We propose the first order kinetic model to describe dynamic contact angles of such adaptive surfaces. The model is general and does not refer to a particular adaptation process. The aim of the proposed model is to provide a quantitative description of adaptive wetting and to link changes in contact angles to microscopic adaptation processes. By introducing exponentially relaxing interfacial energies and applying Young's equation locally, we predict a change of advancing and receding contact angles depending on the velocity of the contact line. Even for perfectly homogeneous and smooth surfaces, a dynamic contact angle hysteresis is obtained. As possible adaptations, we discuss changes and reconstruction of polymer surfaces or monolayers, diffusion and swelling, adsorption of surfactants, replacement of contaminants, reorientation of liquid molecules, or formation of an electric double layer.

19.
Soft Matter ; 14(36): 7429-7434, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30183043

RESUMEN

Superhydrophobic surfaces are usually assumed to be rigid so that liquids do not deform them. Here we analyze how the relation between microstructure and wetting changes when the surface is flexible. Therefore we deposited liquid drops on arrays of flexible micropillars. We imaged the drop's surface and the bending of micropillars with confocal microscopy and analyzed the deflection of micropillars while the contact line advanced and receded. The deflection is directly proportional to the horizontal component of the capillary force acting on that particular micropillar. In the Cassie or "fakir" state, drops advance by touching down on the next top faces of micropillars, much like on rigid arrays. In contrast, on the receding side the micropillars deform. The main force hindering the slide of a drop is due to pinning at the receding side, while the force on the advancing side is negligible. In the Wenzel state, micropillars were deflected in both receding and advancing states.

20.
Angew Chem Int Ed Engl ; 57(39): 12626-12648, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-29663610

RESUMEN

Once materials come into contact with a biological fluid containing proteins, proteins are generally-whether desired or not-attracted by the material's surface and adsorb onto it. The aim of this Review is to give an overview of the most commonly used characterization methods employed to gain a better understanding of the adsorption processes on either planar or curved surfaces. We continue to illustrate the benefit of combining different methods to different surface geometries of the material. The thus obtained insight ideally paves the way for engineering functional materials that interact with proteins in a predetermined manner.


Asunto(s)
Nanoestructuras/química , Proteínas/química , Portadores de Fármacos/química , Unión Proteica , Corona de Proteínas/química , Pliegue de Proteína , Proteínas/metabolismo , Propiedades de Superficie , Nanomedicina Teranóstica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA