Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phycol ; 54(3): 329-341, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29505088

RESUMEN

Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light-dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox-sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle-specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH ) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark-dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re-oxidation was observed upon re-illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light-dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light-dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.


Asunto(s)
Cloroplastos/fisiología , Diatomeas/fisiología , Glutatión/metabolismo , Estrés Oxidativo , Ritmo Circadiano , Proteínas Fluorescentes Verdes/metabolismo , Oxidación-Reducción
2.
Extremophiles ; 20(1): 69-77, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26507954

RESUMEN

We examined the presence of bacteriorhodopsin and other retinal protein pigments in the microbial community of the saltern crystallizer ponds in Eilat, Israel, and assessed the effect of the retinal-based proton pumps on the metabolic activity. The biota of the hypersaline (~309 g salts l(-1)) brine consisted of ~2200 ß-carotene-rich Dunaliella cells and ~3.5 × 10(7) prokaryotes ml(-1), most of which were flat, square or rectangular Haloquadratum-like archaea. No indications were obtained for massive presence of Salinibacter. We estimated a concentration of bacteriorhodopsin and bacteriorhodopsin-like pigments of 3.6 nmol l(-1). When illuminated, the community respiration activity of the brine samples in which oxygenic photosynthesis was inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea, decreased by 40-43 %. This effect was interpreted to be the result of competition between two energy yielding systems: the bacteriorhodopsin proton pump and the respiratory chain. The results presented have important implications for the interpretation of many published data on photosynthetic and respiratory activities in hypersaline environments.


Asunto(s)
Archaea/metabolismo , Bacteriorodopsinas/metabolismo , Chlorophyta/metabolismo , Microbiota , Agua de Mar/microbiología , Transporte de Electrón , Fotosíntesis , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA