Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 509(7501): 512-5, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24747401

RESUMEN

The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB-TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Lipoproteínas/química , Proteínas de Transporte de Membrana/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
2.
Nucleic Acids Res ; 43(19): 9529-40, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26350213

RESUMEN

Genes encoding toxin-antitoxin (TA) systems are near ubiquitous in bacterial genomes and they play key roles in important aspects of bacterial physiology, including genomic stability, formation of persister cells under antibiotic stress, and resistance to phage infection. The CptIN locus from Eubacterium rectale is a member of the recently-discovered Type III class of TA systems, defined by a protein toxin suppressed by direct interaction with a structured RNA antitoxin. Here, we present the crystal structure of the CptIN protein-RNA complex to 2.2 Å resolution. The structure reveals a new heterotetrameric quaternary organization for the Type III TA class, and the RNA antitoxin bears a novel structural feature of an extended A-twist motif within the pseudoknot fold. The retention of a conserved ribonuclease active site as well as traits normally associated with TA systems, such as plasmid maintenance, implicates a wider functional role for Type III TA systems. We present evidence for the co-variation of the Type III component pair, highlighting a distinctive evolutionary process in which an enzyme and its substrate co-evolve.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , ARN Bacteriano/química , Ribonucleasas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Dominio Catalítico , Colifagos/fisiología , Cristalografía por Rayos X , Eubacterium/enzimología , Eubacterium/genética , Evolución Molecular , Modelos Moleculares , Conformación de Ácido Nucleico , Plásmidos , Multimerización de Proteína , Ribonucleasas/genética
3.
Nucleic Acids Res ; 42(21): 13294-305, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25389270

RESUMEN

The endoribonuclease RNase E is a key enzyme in RNA metabolism for many bacterial species. In Escherichia coli, RNase E contributes to the majority of RNA turnover and processing events, and the enzyme has been extensively characterized as the central component of the RNA degradosome assembly. A similar RNA degradosome assembly has been described in the α-proteobacterium Caulobacter crescentus, with the interacting partners of RNase E identified as the Kreb's cycle enzyme aconitase, a DEAD-box RNA helicase RhlB and the exoribonuclease polynucleotide phosphorylase. Here we report that an additional degradosome component is the essential exoribonuclease RNase D, and its recognition site within RNase E is identified. We show that, unlike its E. coli counterpart, C. crescentus RhlB interacts directly with a segment of the N-terminal catalytic domain of RNase E. The crystal structure of a portion of C. crescentus RNase E encompassing the helicase-binding region is reported. This structure reveals that an inserted segment in the S1 domain adopts an α-helical conformation, despite being predicted to be natively unstructured. We discuss the implications of these findings for the organization and mechanisms of the RNA degradosome.


Asunto(s)
Proteínas Bacterianas/química , Caulobacter crescentus/enzimología , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/química , Complejos Multienzimáticos/química , Polirribonucleótido Nucleotidiltransferasa/química , ARN Helicasas/química , Ribonucleasa III/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , ARN Helicasas DEAD-box/química , Endorribonucleasas/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/metabolismo , ARN Bacteriano/metabolismo , Ribonucleasa III/química
4.
J Biol Chem ; 285(8): 5188-95, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19948665

RESUMEN

Bacillus anthracis is a gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 A) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 A(2)) increase in buried surface area at the tetramerization interface of the pyruvate-bound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an "Achilles heel" that can be exploited in structure-based drug design.


Asunto(s)
Carbunco/enzimología , Bacillus anthracis/enzimología , Proteínas Bacterianas/química , Hidroliasas/química , Ácido Pirúvico/química , Sustitución de Aminoácidos , Carbunco/tratamiento farmacológico , Carbunco/genética , Antibacterianos/química , Antibacterianos/uso terapéutico , Bacillus anthracis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Armas Biológicas , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Hidroliasas/antagonistas & inhibidores , Hidroliasas/genética , Hidroliasas/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Mutación Missense , Estructura Cuaternaria de Proteína/fisiología , Ácido Pirúvico/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-19194017

RESUMEN

Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the lysine-biosynthesis pathway in bacteria, plants and some fungi. In this study, the expression of DHDPS from Bacillus anthracis (Ba-DHDPS) and the purification of the recombinant enzyme in the absence and presence of the substrate pyruvate are described. It is shown that DHDPS from B. anthracis purified in the presence of pyruvate yields greater amounts of recombinant enzyme with more than 20-fold greater specific activity compared with the enzyme purified in the absence of substrate. It was therefore sought to crystallize Ba-DHDPS in the presence of the substrate. Pyruvate was soaked into crystals of Ba-DHDPS prepared in 0.2 M sodium fluoride, 20%(w/v) PEG 3350 and 0.1 M bis-tris propane pH 8.0. Preliminary X-ray diffraction data of the recombinant enzyme soaked with pyruvate at a resolution of 2.15 A are presented. The pending crystal structure of the pyruvate-bound form of Ba-DHDPS will provide insight into the function and stability of this essential bacterial enzyme.


Asunto(s)
Bacillus anthracis/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Hidroliasas/biosíntesis , Hidroliasas/aislamiento & purificación , Ácido Pirúvico/química , Difracción de Rayos X , Bacillus anthracis/genética , Cristalización , Hidroliasas/genética , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Especificidad por Sustrato/genética , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA