Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biofouling ; 40(2): 223-234, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38526167

RESUMEN

Concrete infrastructure in coastal waters is increasing. While adding complex habitat and manipulating concrete mixtures to enhance biodiversity have been studied, field investigations of sub-millimetre-scale complexity and substrate colour are lacking. Here, the interacting effects of 'colour' (white, grey, black) and 'microtexture' (smooth, 0.5 mm texture) on colonisation were assessed at three sites in Australia. In Townsville, no effects of colour or microtexture were observed. In Sydney, spirorbid polychaetes occupied more space on smooth than textured tiles, but there was no effect of microtexture on serpulid polychaetes, bryozoans and algae. In Melbourne, barnacles were more abundant on black than white tiles, while serpulid polychaetes showed opposite patterns and ascidians did not vary with treatments. These results suggest that microtexture and colour can facilitate colonisation of some taxa. The context-dependency of the results shows that inclusion of these factors into marine infrastructure designs needs to be carefully considered.


Asunto(s)
Biopelículas , Estuarios , Animales , Color , Australia , Ecosistema , Biodiversidad
2.
Arch Environ Contam Toxicol ; 73(1): 76-92, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28695256

RESUMEN

Gulf menhaden (Brevoortia patronus) exhibited unprecedented juvenile recruitment in 2010 during the year of the Deepwater Horizon well blowout, exceeding the prior 39-year mean by more than four standard deviations near the Mississippi River. Abundance of that cohort remained exceptionally high for two subsequent years as recruits moved into older age classes. Such changes in this dominant forage fish population can be most parsimoniously explained as consequences of release from predation. Contact with crude oil induced high mortality of piscivorous seabirds, bottlenose dolphin (Tursiops truncatus), waders, and other fish-eating marsh birds, all of which are substantial consumers of Gulf menhaden. Diversions of fresh water from the Mississippi River to protect coastal marshes from oiling depressed salinities, impairing access to juvenile Gulf menhaden by aquatic predators that avoid low-salinity estuarine waters. These releases from predation led to an increase of Gulf menhaden biomass in 2011 to 2.4 million t, or more than twice the average biomass of 1.1 million t for the decade prior to 2010. Biomass increases of this magnitude in a major forage fish species suggest additional trophically linked effects at the population-, trophic-level and ecosystem scales, reflecting an heretofore little appreciated indirect effect that may be associated with major oil spills in highly productive marine waters.


Asunto(s)
Monitoreo del Ambiente , Peces/fisiología , Contaminación por Petróleo , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Animales , Ecosistema , Golfo de México , Humedales
3.
Mar Environ Res ; 198: 106498, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631225

RESUMEN

Marine artificial structures provide substrates on which organisms can settle and grow. These structures facilitate establishment and spread of non-indigenous species, in part due to their distinct physical features (substrate material, movement, orientation) compared to natural habitat analogues such as rocky shores, and because following construction, they have abundant resources (space) for species to colonise. Despite the perceived importance of these habitat features, few studies have directly compared distributions of native and non-indigenous species or considered how functional identity and associated environmental preferences drive associations. We undertook a meta-analysis to investigate whether colonisation of native and non-indigenous species varies between artificial structures with features most closely resembling natural habitats (natural substrates, fixed structures, surfaces oriented upwards) and those least resembling natural habitats (artificial materials, floating structures, downfacing or vertical surfaces), or whether functional identity is the primary driver of differences. Analyses were done at global and more local (SE Australia) scales to investigate if patterns held regardless of scale. Our results suggest that functional group (i.e., algae, ascidians. barnacles, bryozoans, polychaetes) rather than species classification (i.e., native or non-indigenous) are the main drivers of differences in communities between different types of artificial structures. Specifically, there were differences in the abundance of ascidians, barnacles, and polychaetes between (1) upfacing and downfacing/vertical surfaces, and (2) floating and fixed substrates. When differences were detected, taxa were most abundant on features least resembling natural habitats. Results varied between global and SE Australian analyses, potentially due to reduced variability across studies in the SE Australian dataset. Thus, the functional group and associated preferences of the highest threat NIS in the area should be considered in design strategies (e.g., ecological engineering) to limit their establishment on newly built infrastructure.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Organismos Acuáticos/fisiología , Biodiversidad , Australia , Monitoreo del Ambiente , Poliquetos/fisiología
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210393, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35757880

RESUMEN

Urbanization is leading to biodiversity loss through habitat homogenization. The smooth, featureless surfaces of many marine urban structures support ecological communities, often of lower biodiversity, distinct from the complex natural habitats they replace. Eco-engineering (design for ecological co-benefits) seeks to enhance biodiversity and ecological functions on urban structures. We assessed the benefits to biodiversity of retrofitting four types of complex habitat panels to an intertidal seawall at patch (versus flat control panels) and site (versus unmodified control seawalls and reference rocky shores) scales. Two years after installation, patch-scale effects of complex panels on biodiversity ranged from neutral to positive, depending on the protective features they provided, though all but one design (honeycomb) supported unique species. Water-retaining features (rockpools) and crevices, which provided moisture retention and cooling, increased biodiversity and supported algae and invertebrates otherwise absent. At the site scale, biodiversity benefits ranged from neutral at the high- and mid-intertidal to positive at the low-intertidal elevation. The results highlight the importance of matching eco-engineering interventions to the niche of target species, and environmental conditions. While species richness was greatest on rockpool and crevice panels, the unique species supported by other panel designs highlights that to maximize biodiversity, habitat heterogeneity is essential. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Ingeniería , Invertebrados , Urbanización
5.
Curr Biol ; 30(24): R1500-R1510, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33352137

RESUMEN

The United Nations General Assembly calls for ecosystem restoration to be a primary intervention strategy used to counter the continued loss of natural habitats worldwide, while supporting human health and wellbeing globally. Restoration of coastal marine ecosystems is perceived by many to be expensive and prone to failure, in part explaining its low rates of implementation compared with terrestrial ecosystems. Yet, marine ecosystem restoration is a relatively new field, and we argue that assessments of its potential to answer this call should not rely on typical outcomes, but also to learn from successful outliers. Here, we review successful restoration efforts across a suite of metrics in coastal marine systems to highlight 'bright spots'. We find that, similar to terrestrial systems, restoration interventions can be effective over large spatial expanses (1,000s-100,000s ha), persist for decades, rapidly expand in size, be cost-effective, and generate social and economic benefits. These bright spots clearly demonstrate restoration of coastal marine systems can be used as a nature-based solution to improve biodiversity and support human health and wellbeing. Examining coastal marine restoration through a historical lens shows that it has developed over a shorter period than restoration in terrestrial systems, partially explaining lower efficiencies. Given these bright spots and the relative immaturity of coastal marine ecosystem restoration, it is likely to advance rapidly over the coming decades and become a common intervention strategy that can reverse marine degradation, contribute to local economies, and improve human wellbeing at a scale relevant to addressing global threats.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental/métodos , Salud Global , Océanos y Mares , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA