Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 67(3): 471-483.e7, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712724

RESUMEN

Mutations in mitochondrial acylglycerol kinase (AGK) cause Sengers syndrome, which is characterized by cataracts, hypertrophic cardiomyopathy, and skeletal myopathy. AGK generates phosphatidic acid and lysophosphatidic acid, bioactive phospholipids involved in lipid signaling and the regulation of tumor progression. However, the molecular mechanisms of the mitochondrial pathology remain enigmatic. Determining its mitochondrial interactome, we have identified AGK as a constituent of the TIM22 complex in the mitochondrial inner membrane. AGK assembles with TIMM22 and TIMM29 and supports the import of a subset of multi-spanning membrane proteins. The function of AGK as a subunit of the TIM22 complex does not depend on its kinase activity. However, enzymatically active AGK is required to maintain mitochondrial cristae morphogenesis and the apoptotic resistance of cells. The dual function of AGK as lipid kinase and constituent of the TIM22 complex reveals that disturbances in both phospholipid metabolism and mitochondrial protein biogenesis contribute to the pathogenesis of Sengers syndrome.


Asunto(s)
Cardiomiopatías/enzimología , Catarata/enzimología , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Translocador 1 del Nucleótido Adenina/metabolismo , Antiportadores/metabolismo , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Catarata/genética , Catarata/patología , Predisposición Genética a la Enfermedad , Células HEK293 , Células HeLa , Humanos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos , Mutación , Fenotipo , Fosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transporte de Proteínas , Factores de Tiempo , Transfección
2.
J Biol Chem ; 291(45): 23769-23778, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27662906

RESUMEN

The mitochondrial electron transport chain consists of individual protein complexes arranged into large macromolecular structures, termed respiratory chain supercomplexes or respirasomes. In the yeast Saccharomyces cerevisiae, respiratory chain supercomplexes form by association of the bc1 complex with the cytochrome c oxidase. Formation and maintenance of these assemblies are promoted by specific respiratory supercomplex factors, the Rcf proteins. For these proteins a regulatory function in bridging the electron transfer within supercomplexes has been proposed. Here we report on the maturation of Rcf2 into an N- and C-terminal peptide. We show that the previously uncharacterized Rcf3 (YBR255c-A) is a homolog of the N-terminal Rcf2 peptide, whereas Rcf1 is homologous to the C-terminal portion. Both Rcf3 and the C-terminal fragment of Rcf2 associate with monomeric cytochrome c oxidase and respiratory chain supercomplexes. A lack of Rcf2 and Rcf3 increases oxygen flux through the respiratory chain by up-regulation of the cytochrome c oxidase activity. A double gene deletion of RCF2 and RCF3 affects cellular survival under non-fermentable growth conditions, suggesting an overlapping role for both proteins in the regulation of the OXPHOS activity. Furthermore, our data suggest an association of all three Rcf proteins with the bc1 complex in the absence of a functional cytochrome c oxidase and identify a supercomplex independent interaction network of the Rcf proteins.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Eliminación de Gen , Mutación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
FEBS Lett ; 588(17): 2985-92, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24928273

RESUMEN

The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxidation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron transporting complexes bc1 complex and the cytochrome c oxidase assemble into large supercomplexes, allowing efficient energy transduction. Currently, we have only limited information about what determines the structure of the supercomplex. Here, we characterize Aim24 in baker's yeast as a protein, which is integrated in the mitochondrial inner membrane and is required for the structural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24 has a function in stabilizing the respiratory chain supercomplexes.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Secuencia de Aminoácidos , Medios de Cultivo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Estabilidad Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
Stem Cell Res ; 11(2): 806-19, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23792436

RESUMEN

Barth syndrome (BTHS) patients carrying mutations in tafazzin (TAZ1), which is involved in the final maturation of cardiolipin, present with dilated cardiomyopathy, skeletal myopathy, growth retardation and neutropenia. To study how mitochondrial function is impaired in BTHS patients, we generated induced pluripotent stem cells (iPSCs) to develop a novel and relevant human model system for BTHS. BTHS-iPSCs generated from dermal fibroblasts of three patients with different mutations in TAZ1 expressed pluripotency markers, and were able to differentiate into cells derived from all three germ layers both in vitro and in vivo. We used these cells to study the impact of tafazzin deficiency on mitochondrial oxidative phosphorylation. We found an impaired remodeling of cardiolipin, a dramatic decrease in basal oxygen consumption rate and in the maximal respiratory capacity in BTHS-iPSCs. Simultaneous measurement of extra-cellular acidification rate allowed us a thorough assessment of the metabolic deficiency in BTHS patients. Blue native gel analyses revealed that decreased respiration coincided with dramatic structural changes in respiratory chain supercomplexes leading to a massive increase in generation of reactive oxygen species. Our data demonstrate that BTHS-iPSCs are capable of modeling BTHS by recapitulating the disease phenotype and thus are important tools for studying the disease mechanism.


Asunto(s)
Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Cardiolipinas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Animales , Síndrome de Barth/genética , Cardiolipinas/biosíntesis , Transporte de Electrón , Fibroblastos/química , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células Madre Pluripotentes Inducidas/química , Masculino , Ratones
5.
Mol Biol Cell ; 23(2): 247-57, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22114354

RESUMEN

The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
6.
Cell Metab ; 15(3): 336-47, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22342701

RESUMEN

The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/genética , Inmunoprecipitación , Complejos Multienzimáticos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
J Cell Biol ; 191(1): 141-54, 2010 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-20876281

RESUMEN

Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation.


Asunto(s)
Proteínas de la Membrana/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA