Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nano Lett ; 24(15): 4447-4453, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588344

RESUMEN

Modern microscopy techniques can be used to investigate soft nano-objects at the nanometer scale. However, time-consuming microscopy measurements combined with low numbers of observable polydisperse objects often limit the statistics. We propose a method for identifying the most representative objects from their respective point clouds. These point cloud data are obtained, for example, through the localization of single emitters in super-resolution fluorescence microscopy. External stimuli, such as temperature, can cause changes in the shape and properties of adaptive objects. Due to the demanding and time-consuming nature of super-resolution microscopy experiments, only a limited number of temperature steps can be performed. Therefore, we propose a deep generative model that learns the underlying point distribution of temperature-dependent microgels, enabling the reliable generation of unlimited samples with an arbitrary number of localizations. Our method greatly cuts down the data collection effort across diverse experimental conditions, proving invaluable for soft condensed matter studies.

2.
Annu Rev Phys Chem ; 74: 391-414, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36750411

RESUMEN

Super-resolution fluorescence microscopy techniques are powerful tools to investigate polymer systems. In this review, we address how these techniques have been applied to hydrogel nano- and microparticles, so-called nano- or microgels. We outline which research questions on microgels could be addressed and what new insights could be achieved. Studies of the morphology, shape, and deformation of microgels; their internal compartmentalization; the cross-linker distribution and polarity inside them; and their dynamics and diffusion are summarized. In particular, the abilities to super-resolve structures in three dimensions have boosted the research field and have also allowed researchers to obtain impressive 3D images of deformed microgels. Accessing information beyond 3D localization, such as spectral and lifetime properties and correlative imaging or the combination of data with other methods, shines new light onto polymer systems and helps us understand their complexity in detail. Such future trends and developments are also addressed.

3.
Angew Chem Int Ed Engl ; 63(10): e202318421, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38165135

RESUMEN

Water molecules play an important role in the structure, function, and dynamics of (bio-) materials. A direct access to the number of water molecules in nanoscopic volumes can thus give new molecular insights into materials and allow for fine-tuning their properties in sophisticated applications. The determination of the local water content has become possible by the finding that H2 O quenches the fluorescence of red-emitting dyes. Since deuterated water, D2 O, does not induce significant fluorescence quenching, fluorescence lifetime measurements performed in different H2 O/D2 O-ratios yield the local water concentration. We combined this effect with the recently developed fluorescence lifetime single molecule localization microscopy imaging (FL-SMLM) in order to nanoscopically determine the local water content in microgels, i.e. soft hydrogel particles consisting of a cross-linked polymer swollen in water. The change in water content of thermo-responsive microgels when changing from their swollen state at room temperature to a collapsed state at elevated temperature could be analyzed. A clear decrease in water content was found that was, to our surprise, rather uniform throughout the entire microgel volume. Only a slightly higher water content around the dye was found in the periphery with respect to the center of the swollen microgels.

4.
Phys Chem Chem Phys ; 24(23): 14408-14415, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35642955

RESUMEN

Functional microgels have powerful applications, especially due to their quick responsiveness to different external stimuli such as temperature, pH, ionic strength, solvent composition and light. Here, we describe the synthesis of novel dual-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels and demonstrate that, in addition to temperature, light changes their properties. The crosslinks inside the microgels were achieved by the host-guest interactions between the trans azobenzene (transAzo) and ß-cyclodextrin (ßCD) units. transAzo can be photoisomerized to cisAzo which exhibits significant lower binding affinity to ßCD. As a consequence, the crosslink density, and thus several microgel properties, can be controlled by light irradiation. Surprisingly, this irradiation with light can significantly change the volume phase transition temperature (VPTT) by several degrees centigrade, presumably due to the fact that the polar ßCD shields the transAzo bound to it, whereas the unbound cisAzo is rather apolar. As a result, continuous irradiation with specific wavelengths until reaching the respective photostationary state allows for a full control over the VPTT within the physiologically relevant range between 32 °C and 38 °C.


Asunto(s)
Microgeles , Geles/química , Transición de Fase , Temperatura , Temperatura de Transición
5.
Phys Chem Chem Phys ; 23(8): 4927-4934, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620358

RESUMEN

Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.

6.
J Org Chem ; 85(23): 15760-15766, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33225705

RESUMEN

A solvent-free mechanochemical synthesis for 1,2,6-thiadiazine 1-oxides starting from NH-sulfonimidamides and propargyl ketones has been developed. Lewis acids affect these one-pot aza-Michael-addition/cyclization/dehydration reaction sequences. The photophysical properties of the resulting heterocyclic sulfonimidamide derivatives were characterized.

7.
Nano Lett ; 19(12): 8862-8867, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31642321

RESUMEN

Solid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach. We investigated thermoresponsive poly(N-isopropylmethacrylamide) microgels (µGs) at different surfaces in an aqueous environment. As super-resolution fluorescence imaging method, three-dimensional direct stochastical optical reconstruction microscopy (dSTORM) allowed for visualizing µGs in their three-dimensional (3D) shape, for example, in a "fried-egg" conformation depending on the hydrophilicity of the surface (strength of adsorption). The 3D shape, as defined by point clouds obtained from single-molecule localizations, was analyzed. A new fitting algorithm yielded an isosurface of constant density which defines the deformation of µGs at the different surfaces. The presented methodology quantifies deformation of objects with fuzzy surfaces and allows for comparison of their structures, whereby it is completely independent from the data acquisition method. Finally, the experimental data are complemented with mesoscopic computer simulations in order to (i) rationalize the experimental results and (ii) to track the evolution of the shape with changing surface hydrophilicity; a good correlation of the shapes obtained experimentally and with computer simulations was found.

8.
Angew Chem Int Ed Engl ; 59(3): 1248-1255, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31664769

RESUMEN

Controlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli-responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus-like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self-assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process. We confirmed the morphology of polyampholyte Janus-like microgels and demonstrate that they are capable of responding quickly to changes in both pH and temperature in aqueous solutions.

9.
Small ; 14(10)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29325203

RESUMEN

Super-resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super-resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light. The key to obtain optimal resolution lies in a proper control over the photochemistry of the photoswitches and its adaption to the system to be imaged. It is hoped that the present work will provide researchers with a guide to choose the best photoswitch derivative for super-resolution microscopy in materials science, just like the correct choice of a Swiss Army Knife's tool is essential to fulfill a given task.

10.
Langmuir ; 34(12): 3597-3603, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29502414

RESUMEN

Photoinduced size changes in microgel particles loaded with gold nanoparticles (AuNPs) were investigated with an extended multiangle dynamic light scattering (DLS) setup. The DLS setup was equipped with a conventional laser (λ = 633 nm) to determine the microgel particle size. Additionally, a laser (λ = 532 nm) is installed to study the photoresponsive behavior of the AuNP-microgel hybrids. The wavelength of 532 nm is close to the absorption maximum of the plasmon resonance of the AuNPs used in the present study (i.e. spherical AuNPs with a diameter of 14 nm). The extended DLS setup enables us to follow in situ the change in microgel size during irradiation. The light stimulus is directly correlated with the size changes of the hybrid particles and the photothermal effect depends on the intensity of the excitation laser. The increase in excitation laser intensity results in a size reduction of hybrid particles because of the ability of AuNPs to partially transform the absorbed photon energy into heat which is emitted into the surrounding microgel network.

11.
Angew Chem Int Ed Engl ; 57(38): 12280-12284, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30070009

RESUMEN

The in situ nanoscopic imaging of soft matter polymer structures is of importance to gain knowledge of the relationship between structure, properties, and functionality on the nanoscopic scale. Cross-linking of polymer chains effects the viscoelastic properties of gels. The correlation of mechanical properties with the distribution and amount of cross-linkers is relevant for applications and for a detailed understanding of polymers on the molecular scale. We introduce a super-resolution fluorescence-microscopy-based method for visualizing and quantifying cross-linker points in polymer systems. A novel diarylethene-based photoswitch with a highly fluorescent closed and a non-fluorescent open form is used as a photoswitchable cross-linker in a polymer network. As an example for its capability to nanoscopically visualize cross-linking, we investigate pNIPAM microgels as a system known with variations in internal cross-linking density.

12.
Biomacromolecules ; 18(9): 2789-2798, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28745493

RESUMEN

In this work we explored an enzyme-mediated method for selective and efficient decoration of aqueous microgels with biomolecules. Poly(N-vinylcaprolactam) (VCL) microgels with varied amounts of glycidyl methacrylate (GMA) as comonomer incorporated in the microgel shell were synthesized and characterized in regard to their size, swelling degree, and temperature-responsiveness in aqueous solutions. The surface of the PVCL/GMA microgel containing 5 mol % glycidyl methyacrylate was modified by grafting of a specific recognition peptide sequence (LPETG) for Sortase A from Staphylococcus aureus (Sa-SrtAΔ59). Sortase-mediated conjugation of the enhanced Green Fluorescent Protein (eGFP) carrying a N-terminal triglycine tag to LPETG-modified microgels was successfully performed. Conjugation of eGFP to the microgel surface was qualitatively proven by confocal microscopy and by fluorescence intensity measurements. The developed protocol enables a precise control of the amount of eGFP grafted to the microgel surface as evidenced by the linear increase of fluorescence intensity of modified microgel samples. The kinetic of the sortase-mediated coupling reaction was determined by time-dependent fluorescence intensity measurements. In summary, sortase-mediated coupling reactions are a simple and powerful technique for targeted surface functionalization of stimuli-responsive microgels with biomolecules.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Caprolactama/análogos & derivados , Cisteína Endopeptidasas/metabolismo , Hidrogeles/síntesis química , Polímeros/química , Aminoaciltransferasas/química , Proteínas Bacterianas/química , Sitios de Unión , Caprolactama/química , Cisteína Endopeptidasas/química , Proteínas Fluorescentes Verdes/química , Hidrogeles/química , Metacrilatos/química , Fragmentos de Péptidos/química , Staphylococcus aureus/enzimología
13.
Nano Lett ; 16(11): 7295-7301, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27701865

RESUMEN

Compartmentalization in soft matter is important for segregating and coordinating chemical reactions, sequestering (re)active components, and integrating multifunctionality. Advances depend crucially on quantitative 3D visualization in situ with high spatiotemporal resolution. Here, we show the direct visualization of different compartments within adaptive microgels using a combination of in situ electron and super-resolved fluorescence microscopy. We unravel new levels of structural details and address the challenge of reconstructing 3D information from 2D projections for nonuniform soft matter as opposed to monodisperse proteins. Moreover, we visualize the thermally induced shrinkage of responsive core-shell microgels live in water. This strategy opens doors for systematic in situ studies of soft matter systems and their application as smart materials.

14.
Angew Chem Int Ed Engl ; 55(41): 12698-702, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27619176

RESUMEN

The in situ imaging of soft matter is of paramount importance for a detailed understanding of functionality on the nanoscopic scale. Although super-resolution fluorescence microscopy methods with their unprecedented imaging capabilities have revolutionized research in the life sciences, this potential has been far less exploited in materials science. One of the main obstacles for a more universal application of super-resolved fluorescence microscopy methods is the limitation of readily available suitable dyes to overcome the diffraction limit. Here, we report a novel diarylethene-based photoswitch with a highly fluorescent closed and a nonfluorescent open form. Its photophysical properties, switching behavior, and high photostability make the dye an ideal candidate for photoactivation localization microscopy (PALM). It is capable of resolving apolar structures with an accuracy far beyond the diffraction limit of optical light in cylindrical micelles formed by amphiphilic block copolymers.

15.
Langmuir ; 30(46): 14056-61, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25358126

RESUMEN

Thermoresponsive materials exhibit an enormous potential for tissue engineering, separation systems, and drug delivery. We investigated the diffusion of laponite clay nanoparticles, which serve as physical cross-linkers to achieve improved material properties in poly(N-isopropylacrylamide) (PNIPAM)-clay composite hydrogels close to the gel point. The networks are formed through physical interactions between PNIPAM chains and clay nanoparticles after these two components are mixed. In contrast to previous studies, a covalent labeling strategy was chosen to minimize the amount of free dyes in solution. Single-particle tracking of the labeled clay nanoparticles showed that their diffusion is anomalous at all temperatures used in this study, reflecting the viscoelastic behavior as a cross-linker. Stepwise heating from 24 to 38 °C resulted in a slight increase of the diffusion coefficient and the anomality parameter α up to the volume phase transition temperature of ca. 31 °C, which was followed by a significant drop of both parameters, reflecting strongly hindered motion of the collapsed nanoparticle aggregates.


Asunto(s)
Resinas Acrílicas/química , Silicatos de Aluminio/química , Hidrogeles/química , Nanopartículas/química , Arcilla , Microscopía Fluorescente
16.
Mol Ther ; 21(12): 2217-26, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23941812

RESUMEN

Electroporation is a physical method of transferring molecules into cells and tissues. It takes advantage of the transient permeabilization of the cell membrane induced by electric field pulses, which gives hydrophilic molecules access to the cytoplasm. This method offers high transfer efficiency for small molecules that freely diffuse through electrically permeabilized membranes. Larger molecules, such as plasmid DNA, face several barriers (plasma membrane, cytoplasmic crowding, and nuclear envelope), which reduce transfection efficiency and engender a complex mechanism of transfer. Our work provides insight into the way electrotransferred DNA crosses the cytoplasm to reach the nucleus. For this purpose, single-particle tracking experiments of fluorescently labeled DNA were performed. Investigations were focused on the involvement of the cytoskeleton using drugs disrupting or stabilizing actin and tubulin filaments as the two relevant cellular networks for particle transport. The analysis of 315 movies (~4,000 trajectories) reveals that DNA is actively transported through the cytoskeleton. The large number of events allows a statistical quantification of the DNA motion kinetics inside the cell. Disruption of both filament types reduces occurrence and velocities of active transport and displacements of DNA particles. Interestingly, stabilization of both networks does not enhance DNA transport.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Rastreo Celular , Citoplasma/metabolismo , Electroporación , Plásmidos/metabolismo , Transfección , Tubulina (Proteína)/metabolismo , Transporte Activo de Núcleo Celular , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células CHO , Permeabilidad de la Membrana Celular , Cricetulus , Citoesqueleto , Depsipéptidos/farmacología , Humanos , Microscopía Fluorescente , Paclitaxel/farmacología , Plásmidos/genética , Tiazolidinas/farmacología
17.
Phys Chem Chem Phys ; 15(17): 6196-205, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23429424

RESUMEN

Single molecule tracking provides unprecedented insights into diffusional processes of systems in life and material sciences. Determination of molecule positions with high accuracy and correct connection of the determined positions to tracks is a challenging task with, so far, no universal solution for single fluorescing molecules tackling the challenge of low signal-to-noise ratios, frequent blinking and photo bleaching. Thus, the development of novel algorithms for automatic single molecule fluorescence tracking is essential to analyse the huge amount of diffusional data obtained with single molecule widefield fluorescence microscopy. Here, we present a novel tracking model using a top-down polyhedral approach which can be implemented effectively using standard linear programming solvers. The results of our tracking approach are compared to the ground truth of simulated data with different diffusion coefficients, signal-to-noise ratios and particle densities. We also determine the dependency of blinking on the analysed distribution of diffusion coefficients. To confirm the functionality of our tracking method, the results of automatic tracking and manual tracking by a human expert are compared and discussed.


Asunto(s)
Microscopía Fluorescente/métodos , Algoritmos , Difusión , Fluorescencia
18.
Angew Chem Int Ed Engl ; 52(47): 12435-8, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24222580

RESUMEN

A photocleavable energy-transfer dyad was synthesized, characterized, and applied to single-molecule fluorescence microscopy. After photocleavage, a combination of independent two-color single-molecule tracking and analysis of single-molecule energy-transfer efficiencies allows the determination of the temporal evolution of the relative distances between both fragments from the nm to the µm scale. This gives access to a broad range of diffusion coefficients.


Asunto(s)
Antracenos/síntesis química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Perileno/síntesis química , Antracenos/química , Difusión , Colorantes Fluorescentes/síntesis química , Imidas/química , Microscopía Fluorescente , Perileno/química , Fotólisis , Rayos Ultravioleta
19.
Macromol Biosci ; 23(8): e2200456, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36605024

RESUMEN

Depending on their architectural and chemical design, microgels can selectively take up and release small molecules by changing the environmental properties, or capture and protect their cargo from the surrounding conditions. These outstanding properties make them promising candidates for use in biomedical applications as delivery or carrier systems. In this study, hollow anionic p(N-isopropylacrylamid-e-co-itaconic acid) microgels are synthesized and analyzed regarding their size, charge, and charge distribution. Furthermore, interactions between these microgels and the model protein cytochrome c are investigated as a function of pH. In this system, pH serves as a switch for the electrostatic interactions to alternate between no interaction, attraction, and repulsion. UV-vis spectroscopy is used to quantitatively study the encapsulation of cytochrome c and possible leakage. Additionally, fluorescence-lifetime images unravel the spatial distribution of the protein within the hollow microgels as a function of pH. These analyses show that cytochrome c mainly remains entrapped in the microgel, with pH controlling the localization of the protein - either in the microgel's cavity or in its network. This significantly differentiates these hollow microgels from microgels with similar chemical composition but without a solvent filled cavity.


Asunto(s)
Nanoestructuras , Cápsulas/química , Concentración de Iones de Hidrógeno , Microgeles/química , Citocromos c/química , Aniones/química
20.
J Am Chem Soc ; 134(1): 480-8, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22088172

RESUMEN

Single-molecule fluorescence microscopy was used to investigate the dynamics of perylene diimide (PDI) molecules in thin supported polystyrene (PS) films at temperatures up to 135 °C. Such high temperatures, so far unreached in single-molecule spectroscopy studies, were achieved using a custom-built setup which allows for restricting the heated mass to a minimum. This enables temperature-dependent single-molecule fluorescence studies of structural dynamics in the temperature range most relevant to the processing and to applications of thermoplastic materials. In order to ensure that polymer chains were relaxed, a molecular weight of 3000 g/mol, clearly below the entanglement length of PS, was chosen. We found significant heterogeneities in the motion of single PDI probe molecules near T(g). An analysis of the track radius of the recorded single-probe molecule tracks allowed for a distinction between mobile and immobile molecules. Up to the glass transition temperature in bulk, T(g,bulk), probe molecules were immobile; at temperatures higher than T(g,bulk) + 40 K, all probe molecules were mobile. In the range between 0 and 40 K above T(g,bulk) the fraction of mobile probe molecules strongly depends on film thickness. In 30-nm thin films mobility is observed at lower temperatures than in thick films. The fractions of mobile probe molecules were compared and rationalized using Monte Carlo random walk simulations. Results of these simulations indicate that the observed heterogeneities can be explained by a model which assumes a T(g) profile and an increased probability of probe molecules remaining at the surface, both effects caused by a density profile with decreasing polymer density at the polymer-air interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA