Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 18(5): e1010198, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35613247

RESUMEN

Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci.


Asunto(s)
Proteínas Bacterianas , Regulón , Proteínas Bacterianas/metabolismo , Competencia de la Transformación por ADN/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Péptidos/genética , Feromonas/genética , Feromonas/metabolismo , Regulón/genética , Transducción de Señal/genética
2.
Am J Transplant ; 23(5): 649-658, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773936

RESUMEN

As solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings.


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Vacuna BNT162 , Estudios de Cohortes , Interferón gamma , Trasplante de Riñón/efectos adversos , Estudios Prospectivos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección Irruptiva , Inmunoglobulina G , Receptores de Trasplantes , Vacunación
3.
Artículo en Inglés | MEDLINE | ID: mdl-39134165

RESUMEN

Lung transplant recipients (LTRs) are susceptible to severe Coronavirus Disease 2019 (COVID-19) and had lower immune responses to primary severe acute respiratory syndrome-related to coronavirus 2 (SARS-CoV-2) vaccination as compared to the general population and to other solid organ transplant recipients. As immunity induced by booster vaccination and natural infection has increased since the beginning of the pandemic in the general population, immunity acquired by LTRs is not well documented. Humoral and cellular immunity to SARS-CoV-2 was monitored in February and May 2023 in 30 LTRs and compared to that of health care workers (HCWs) and nursing home residents (NHRs). LTRs had significantly lower levels of SARS-CoV-2 binding and neutralizing antibodies and lower interferon-gamma responses to Wuhan, Delta, and XBB1.5 variants as compared to HCWs and NHRs. Humoral immunity decreased between the 2 visits, whereas cellular immunity remained more stable. The persistent defect in SARS-CoV-2 immunity in LTRs should encourage continued monitoring and preventive measures for this vulnerable population.

4.
Kidney Int Rep ; 9(3): 635-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481503

RESUMEN

Introduction: Comorbidities and immunosuppressive therapies are associated with reduced immune responses to primary COVID-19 mRNA vaccination in kidney transplant recipients (KTRs). In healthy individuals, prior SARS-COV-2 infection is associated with increased vaccine responses, a phenotype called hybrid immunity. In this study, we explored the potential influence of immune suppression on hybrid immunity in KTRs. Methods: Eighty-two KTRs, including 59 SARS-CoV-2-naïve (naïve KTRs [N-KTRs]) and 23 SARS-CoV-2-experienced (experienced KTRs [E-KTRs]) patients, were prospectively studied and compared to 106 healthy controls (HCs), including 40 SARS-CoV-2-naïve (N-HCs) and 66 SARS-CoV-2-experienced (E-HCs) subjects. Polyfunctional antibody and T cell responses were measured following 2 doses of BNT162b2 mRNA vaccine. Associations between vaccine responses and clinical characteristics were studied by univariate and multivariate analyses. Results: In naïve KTRs, vaccine responses were markedly lower than in HCs and were correlated with older age, more recent transplantation, kidney retransplantation after graft failure, arterial hypertension, and treatment with mycophenolate mofetil (MMF). In contrast, vaccine responses of E-KTRs were similar to those of HCs and were associated with time between transplantation and vaccination, but not with the other risk factors associated with low vaccine responses in naïve KTRs. Conclusion: In conclusion, hybrid immunity overcomes immune suppression and provides potent humoral and cellular immunity to SARS-CoV-2 in KTRs.

5.
Vaccine ; 41(17): 2829-2836, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36997386

RESUMEN

BACKGROUND: Nursing home residents, a frail and old population group, respond poorly to primary mRNA COVID-19 vaccination. A third dose has been shown to boost protection against severe disease and death in this immunosenescent population, but limited data is available on the immune responses it induces. METHODS: In this observational cohort study, peak humoral and cellular immune responses were compared 28 days after the second and third doses of the BNT162b2 mRNA COVID-19 vaccine in residents and staff members of two Belgian nursing homes. Only individuals without evidence of previous SARS-CoV-2 infection at third dose administration were included in the study. In addition, an extended cohort of residents and staff members was tested for immune responses to a third vaccine dose and was monitored for vaccine breakthrough infections in the following six months. The trial is registered on ClinicalTrials.gov (NCT04527614). FINDINGS: All included residents (n = 85) and staff members (n = 88) were SARS-CoV-2 infection naïve at third dose administration. Historical blood samples from 28 days post second dose were available from 42 residents and 42 staff members. Magnitude and quality of humoral and cellular immune responses were strongly boosted in residents post third compared to post second dose. Increases were less pronounced in staff members than in residents. At 28 days post third dose, differences between residents and staff had become mostly insignificant. Humoral, but not cellular, responses induced by a third dose were predictive of subsequent incidence of vaccine breakthrough infection in the six months following vaccination. INTERPRETATION: These data show that a third dose of mRNA COVID-19 vaccine largely closes the gap in humoral and cellular immune response observed after primary vaccination between NH residents and staff members but suggest that further boosting might be needed to achieve optimal protection against variants of concern in this vulnerable population group.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Adulto , Grupos de Población , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Infección Irruptiva , Casas de Salud , ARN Mensajero , Inmunidad , Anticuerpos Antivirales , Vacunas de ARNm
6.
mSystems ; 7(6): e0073522, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36342134

RESUMEN

Competence is one of the most efficient bacterial evolutionary and adaptative strategies by synchronizing production of antibacterial compounds and integration of DNA released by dead cells. In most streptococci, this tactic is orchestrated by the ComRS system, a pheromone communication device providing a short time window of activation in which only part of the population is responsive. Understanding how this developmental process integrates multiple inputs to fine-tune the adequate response is a long-standing question. However, essential genes involved in the regulation of ComRS have been challenging to study. In this work, we built a conditional mutant library using CRISPR interference and performed three complementary screens to investigate competence genetic regulation in the human commensal Streptococcus salivarius. We show that initiation of competence increases upon cell wall impairment, suggesting a connection between cell envelope stress and competence activation. Notably, we report a key role for StkP, a serine-threonine kinase known to regulate cell wall homeostasis. We show that StkP controls competence by a mechanism that reacts to peptidoglycan fragments. Together, our data suggest a key cell wall sensing mechanism coupling competence to cell envelope integrity. IMPORTANCE Survival of human commensal streptococci in the digestive tract requires efficient strategies which must be tightly and collectively controlled for responding to competitive pressure and drastic environmental changes. In this context, the autocrine signaling system ComRS controlling competence for natural transformation and predation in salivarius streptococci could be seen as a multi-input device integrating a variety of environmental stimuli. In this work, we revealed novel positive and negative competence modulators by using a genome-wide CRISPR interference strategy. Notably, we highlighted an unexpected connection between bacterial envelope integrity and competence activation that involves several cell wall sensors. Together, these results showcase how commensal streptococci can fine-tune the pheromone-based competence system by responding to multiple inputs affecting their physiological status in order to calibrate an appropriate collective behavior.


Asunto(s)
Streptococcus salivarius , Humanos , Streptococcus salivarius/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Bacterianas/genética , Streptococcus/genética , Pared Celular/genética , Feromonas/genética
7.
PLOS Glob Public Health ; 2(12): e0001308, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962838

RESUMEN

Fractional dosing of COVID-19 vaccines could accelerate vaccination rates in low-income countries. Dose-finding studies of the mRNA vaccine BNT162b2 (Pfizer-BioNTech) suggest that a fractional dose induces comparable antibody responses to the full dose in people <55 years. Here, we report the safety and immunogenicity of a fractional dose regimen of the BNT162b2 vaccine. REDU-VAC is a participant-blinded, randomised, phase 4, non-inferiority study. Adults 18-55 years old, either previously infected or infection naïve, were randomly assigned to receive 20µg/20µg (fractional dose) or 30µg/30µg (full dose) of BNT162b2. The primary endpoint was the geometric mean ratio (GMR) of SARS-CoV-2 anti-RBD IgG titres at 28 days post second dose between the reduced and full dose regimens. The reduced dose was considered non-inferior to the full dose if the lower limit of the two-sided 95% CI of the GMR was >0.67. Primary analysis was done on the per-protocol population, including infection naïve participants only. 145 participants were enrolled and randomized, were mostly female (69.5%), of European origin (95%), with a mean age of 40.4 years (SD 7.9). At 28 days post second dose, the geometric mean titre (GMT) of anti-RBD IgG of the reduced dose regimen (1,705 BAU/mL) was not non-inferior to the full dose regimen (2,387 BAU/mL), with a GMR of 0.714 (two-sided 95% CI 0.540-0.944). No serious adverse events occurred. While non-inferiority of the reduced dose regimen was not demonstrated, the anti-RBD IgG titre was only moderately lower than that of the full dose regimen and, importantly, still markedly higher than the reported antibody response to the licensed adenoviral vector vaccines. These data suggest that reduced doses of the BNT162b2 mRNA vaccine may offer additional benefit as compared to the vaccines currently in use in most low and middle-income countries, warranting larger immunogenicity and effectiveness trials. Trial Registration: The trial is registered at ClinicalTrials.gov (NCT04852861).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA