RESUMEN
A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors.
Asunto(s)
Dopamina/metabolismo , Etanol/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens/efectos de los fármacos , Consumo de Alcohol en Menores , Adolescente , Adulto , Animales , Dopamina/genética , Etanol/administración & dosificación , Etanol/efectos adversos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/genética , Humanos , Masculino , Núcleo Accumbens/metabolismo , Ratas Wistar , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Adulto JovenRESUMEN
In humans, alcohol is consumed for its rewarding and anxiolytic effects. The central nucleus of the amygdala (CeA) is considered a neuronal nexus that regulates fear, anxiety, and drug self-administration. Manipulations of the CeA alter ethanol (EtOH) consumption under numerous EtOH self-administration models. The experiments determined whether EtOH is reinforcing/anxiolytic within the CeA, whether selective breeding for high alcohol consumption alters the rewarding properties of EtOH in the CeA, and whether the reinforcing/anxiolytic effects of EtOH in the CeA are mediated by the neuropeptides corticotropin-releasing factor (CRF) and nociceptin. The reinforcing properties of EtOH were determined by having male Wistar and Taconic alcohol-preferring (tP) rats self-administer EtOH directly into the CeA. The expression of anxiety-like behaviors was assessed through multiple behavioral models (social interaction, acoustic startle, and open field). Coadministration of EtOH and a CRF1 antagonist (NBI35965) or nociceptin on self-administration into the CeA and anxiety-like behaviors was determined. EtOH was self-administered directly into the lateral CeA, and tP rats self-administered a lower concentration of EtOH than Wistar rats. EtOH microinjected into the lateral CeA reduced the expression of anxiety-like behaviors, indicating an anxiolytic effect. Coadministration of NBI35965 failed to alter the rewarding/anxiolytic properties of EtOH in the CeA. In contrast, coadministration of the nociceptin enhanced both EtOH reward and anxiolysis in the CeA. Overall, the data indicate that the lateral CeA is a key anatomic location that mediates the rewarding and anxiolytic effects of EtOH, and local nociceptin receptors, but not local CRF1 receptors, are involved in these behaviors. SIGNIFICANCE STATEMENT: Alcohol is consumed for the stimulatory, rewarding, and anxiolytic properties of the drug of abuse. The current data are the first to establish that alcohol is reinforcing and anxiolytic within the lateral central nucleus of the amygdala (CeA) and that the nociceptin system regulates these effects of alcohol within the CeA.
Asunto(s)
Ansiolíticos/farmacología , Núcleo Amigdalino Central/efectos de los fármacos , Etanol/farmacología , Antecedentes Genéticos , Péptidos Opioides/metabolismo , Recompensa , Animales , Conducta Animal/efectos de los fármacos , Núcleo Amigdalino Central/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Wistar , Conducta Social , NociceptinaRESUMEN
AIMS: Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. METHODS: Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7-9 per group) that were treated with 0-3.0 g/kg EtOH (intraperitoneally). RESULTS: Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape dose-response curve with peak levels (~200% of baseline) at the 2.25 g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape dose-response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. CONCLUSION: The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. SHORT SUMMARY: Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system.
Asunto(s)
Dopamina/análisis , Etanol/farmacología , Serotonina/análisis , Área Tegmental Ventral/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Infusiones Parenterales , Masculino , Microdiálisis , Ratas , Ratas Wistar , Recompensa , Área Tegmental Ventral/químicaRESUMEN
OBJECTIVES: The purposes of this study were to fabricate biodegradable polydioxanone (PDS II®) electrospun periodontal drug delivery systems (hereafter referred to as matrices) containing either metronidazole (MET) or ciprofloxacin (CIP) and to investigate the effects of antibiotic incorporation on both periodontopathogens and commensal oral bacteria. MATERIALS AND METHODS: Fibrous matrices were processed from PDS polymer solution by electrospinning. Antibiotic-containing PDS solutions were prepared to obtain four distinct groups: 5 wt.% MET, 25 wt.% MET, 5 wt.% CIP, and 25 wt.% CIP. Pure PDS was used as a control. High-performance liquid chromatography (HPLC) was done to evaluate MET and CIP release. Dual-species biofilms formed by Lactobacillus casei (Lc) and Streptococcus salivarius (Ss) were grown on the surface of all electrospun matrices. After 4 days of biofilm growth, the viability of bacteria on biofilms was assessed. Additionally, antimicrobial properties were evaluated against periodontopathogens Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa) using agar diffusion assay. RESULTS: A three-dimensional interconnected porous network was observed in the different fabricated matrices. Pure PDS showed the highest fiber diameter mean (1,158 ± 402 nm) followed in a descending order by groups 5 wt.% MET (1,108 ± 383 nm), 25 wt.% MET (944 ± 392 nm), 5 wt.% CIP (871 ± 309 nm), and 25 wt.% CIP (765 ± 288 nm). HPLC demonstrated that groups containing higher amounts (25 wt.%) of incorporated drugs released more over time, while those with lower levels (5 wt.%) the least. No inhibitory effect of the tested antibiotics was detected on biofilm formation by the tested commensal oral bacteria. Meanwhile, CIP-containing matrices inhibited growth of Fn and Aa. CONCLUSION: CIP-containing matrices led to a significant inhibition of periodontopathogens without negatively impairing the growth of periodontal beneficial bacteria. CLINICAL RELEVANCE: Based on the proven in vitro inhibition of periodontitis-related bacteria, future in vivo research using relevant animal models is needed to confirm the effectiveness of these drug delivery systems.
Asunto(s)
Antiinfecciosos/farmacología , Ciprofloxacina/farmacología , Sistemas de Liberación de Medicamentos , Metronidazol/farmacología , Nanofibras , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Aggregatibacter actinomycetemcomitans/efectos de los fármacos , Antiinfecciosos/administración & dosificación , Biopelículas/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Ciprofloxacina/administración & dosificación , Fusobacterium nucleatum/efectos de los fármacos , Humanos , Técnicas In Vitro , Lacticaseibacillus casei/efectos de los fármacos , Metronidazol/administración & dosificación , Polidioxanona , Streptococcus/efectos de los fármacosRESUMEN
Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.
RESUMEN
RATIONALE AND OBJECTIVES: Binge-like alcohol consumption during adolescence associates with several deleterious consequences during adulthood including an increased risk for developing alcohol use disorder (AUD) and other addictions. Replicated preclinical data has indicated that adolescent exposure to binge-like levels of alcohol results in a reduction of choline acetyltransferase (ChAT) and an upregulation in the α7 nicotinic receptor (α7). From this information, we hypothesized that the α7 plays a critical role in mediating the effects of adolescent alcohol exposure. METHODS: Male and female P rats were injected with the α7 agonist AR-R17779 (AR) once during 6 time points between post-natal days (PND) 29-37. Separate groups were injected with the α7 negative allosteric modulator (NAM) dehydronorketamine (DHNK) 2 h before administration of 4 g/kg EtOH (14 total exposures) during PND 28-48. On PND 75, all rats were given access to water and ethanol (15 and 30%) for 6 consecutive weeks (acquisition). All rats were then deprived of EtOH for 2 weeks and then, alcohol was returned (relapse). RESULTS: Administration of AR during adolescence significantly increased acquisition of alcohol consumption during adulthood and prolonged relapse drinking in P rats. In contrast, administration of DHNK prior to binge-like EtOH exposure during adolescence prevented the increase in alcohol consumption observed during acquisition of alcohol consumption and the enhancement of relapse drinking observed during adulthood. DISCUSSION: The data indicate that α7 mediates the effects of alcohol during adolescence. The data also indicate that α7 NAMs are potential prophylactic agents to reduce the deleterious effects of adolescent alcohol abuse.
Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Etanol/efectos adversos , Compuestos de Espiro/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Factores de Edad , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Conducta Adictiva/tratamiento farmacológico , Conducta Adictiva/genética , Conducta Adictiva/psicología , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/psicología , Hidrocarburos Aromáticos con Puentes/farmacología , Etanol/administración & dosificación , Femenino , Masculino , Ratas , Ratas Transgénicas , Compuestos de Espiro/farmacología , Resultado del Tratamiento , Receptor Nicotínico de Acetilcolina alfa 7/fisiologíaRESUMEN
RATIONALE: There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls. OBJECTIVES: The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption. METHODS: The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotine administered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines. RESULTS: The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming rats shifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of α2 and ß4. CONCLUSION: Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotine reinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets.
Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Dopamina/genética , Locomoción/genética , Selección Artificial/genética , Tabaquismo/genética , Área Tegmental Ventral/fisiología , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Dopamina/metabolismo , Etanol/administración & dosificación , Femenino , Locomoción/efectos de los fármacos , Masculino , Nicotina/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Ratas , Ratas Wistar , Refuerzo en Psicología , Autoadministración , Tabaquismo/metabolismo , Área Tegmental Ventral/efectos de los fármacosRESUMEN
RATIONALE: The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES: The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS: Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 µM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS: Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 µM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 µM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS: Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.