Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052983

RESUMEN

Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.

2.
Mol Psychiatry ; 27(2): 886-895, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34650208

RESUMEN

Social isolation poses a severe mental and physiological burden on humans. Most animal models that investigate this effect are based on prolonged isolation, which does not mimic the milder conditions experienced by people in the real world. We show that in adult male rats, acute social isolation causes social memory loss. This memory loss is accompanied by significant changes in the expression of specific mRNAs and proteins in the medial amygdala, a brain structure that is crucial for social memory. These changes particularly involve the neurotrophic signaling and axon guidance pathways that are associated with neuronal network remodeling. Upon regrouping, memory returns, and most molecular changes are reversed within hours. However, the expression of some genes, especially those associated with neurodegenerative diseases remain modified for at least a day longer. These results suggest that acute social isolation and rapid resocialization, as experienced by millions during the COVID-19 pandemic, are sufficient to induce significant changes to neuronal networks, some of which may be pathological.


Asunto(s)
COVID-19 , Complejo Nuclear Corticomedial , Animales , Humanos , Masculino , Trastornos de la Memoria , Pandemias , Ratas , Aislamiento Social
3.
BMC Biol ; 20(1): 159, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35820848

RESUMEN

BACKGROUND: Various mammalian species emit ultrasonic vocalizations (USVs), which reflect their emotional state and mediate social interactions. USVs are usually analyzed by manual or semi-automated methodologies that categorize discrete USVs according to their structure in the frequency-time domains. This laborious analysis hinders the effective use of USVs as a readout for high-throughput analysis of behavioral changes in animals. RESULTS: Here we present a novel automated open-source tool that utilizes a different approach towards USV analysis, termed TrackUSF. To validate TrackUSF, we analyzed calls from different animal species, namely mice, rats, and bats, recorded in various settings and compared the results with a manual analysis by a trained observer. We found that TrackUSF detected the majority of USVs, with less than 1% of false-positive detections. We then employed TrackUSF to analyze social vocalizations in Shank3-deficient rats, a rat model of autism, and revealed that these vocalizations exhibit a spectrum of deviations from appetitive calls towards aversive calls. CONCLUSIONS: TrackUSF is a simple and easy-to-use system that may be used for a high-throughput comparison of ultrasonic vocalizations between groups of animals of any kind in any setting, with no prior assumptions.


Asunto(s)
Trastorno Autístico , Ultrasonido , Animales , Emociones , Mamíferos , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Ratas , Vocalización Animal
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835332

RESUMEN

Purposeful induction of fever for healing, including the treatment of epilepsy, was used over 2000 years ago by Hippocrates. More recently, fever has been demonstrated to rescue behavioral abnormalities in children with autism. However, the mechanism of fever benefit has remained elusive due in large part to the lack of appropriate human disease models recapitulating the fever effect. Pathological mutations in the IQSEC2 gene are frequently seen in children presenting with intellectual disability, autism and epilepsy. We recently described a murine A350V IQSEC2 disease model, which recapitulates important aspects of the human A350V IQSEC2 disease phenotype and the favorable response to a prolonged and sustained rise in body core temperature in a child with the mutation. Our goal has been to use this system to understand the mechanism of fever benefit and then develop drugs that can mimic this effect and reduce IQSEC2-associated morbidity. In this study, we first demonstrate a reduction in seizures in the mouse model following brief periods of heat therapy, similar to what was observed in a child with the mutation. We then show that brief heat therapy is associated with the correction of synaptic dysfunction in neuronal cultures of A350V mice, likely mediated by Arf6-GTP.


Asunto(s)
Epilepsia , Factores de Intercambio de Guanina Nucleótido , Hipertermia Inducida , Proteínas del Tejido Nervioso , Convulsiones , Animales , Niño , Humanos , Ratones , Epilepsia/terapia , Factores de Intercambio de Guanina Nucleótido/genética , Calor , Discapacidad Intelectual/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptores AMPA/genética , Convulsiones/terapia
5.
Int J Hyperthermia ; 38(1): 1495-1501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34666607

RESUMEN

OBJECTIVES: Mutations in the human IQSEC2 gene are associated with drug-resistant epilepsy and severe behavioral dysfunction. We have focused on understanding one human IQSEC2 missense mutation (A350V) for which we have created a corresponding A350V IQSEC2 mouse model by CRISPR which demonstrates seizures when the mice are 15-20 days old and impaired social vocalizations in adulthood. We observed that a child with the A350V mutation stops having seizures when experiencing a fever of greater than 38 °C. In this study, we first sought to determine if we could recapitulate this phenomenon in A350V 15-20 day old mice using a previously established protocol to raise body temperature to 39 °C achieved by housing the mice at 37 °C. We then sought to determine if mice in whom seizure activity had been prevented as pups would develop social vocalization activity in adulthood. METHODS: 15-20 day old A350V male mice were housed either at 37 °C or 22 °C. Ultrasonic vocalizations of these mice were assessed at 8-10 weeks in response to a female stimulus. RESULTS: Housing of 15-20 day old A350V mice at 37 °C resulted in a reduction in lethal seizures to 2% (1/41) compared to 45% (48/108) in mice housed at 22 °C, p = 0.0001. Adult A350V mice who had been housed at 37 °C as pups displayed a significant improvement in the production of social vocalizations. CONCLUSION: Raising the body temperature by raising the ambient temperature might provide a means to reduce seizures associated with the A350V IQSEC2 mutation and thereby allow for an improved neurodevelopmental trajectory.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Convulsiones/prevención & control , Temperatura , Vocalización Animal , Animales , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Vivienda , Masculino , Ratones , Proteínas del Tejido Nervioso
6.
Cell Tissue Res ; 375(1): 133-142, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30465153

RESUMEN

The corticotropin-releasing factor (CRF) system is well known for its major role in coordinating the endocrine, autonomic and behavioral responses to stress. These functions have been shown to be mediated mainly by the binding of the CRF neuropeptide to its specific receptor CRFR1. Yet, the CRF system comprises several more neuropeptides, including the three urocortins, UCN1, UCN2 and UCN3, of which the latter two bind specifically to a distinct receptor-CRFR2. Unlike the brain-wide abundant expression of CRF and CRFR1, the brain expression of the urocortins and CRFR2 is rather restricted and seems to be focused in limbic areas associated with social behavior. Here, we will review accumulating evidence from recent studies that unfold the role of UCN2 and UCN3 in regulating mammalian social behavior, via activation of CRFR2.


Asunto(s)
Mamíferos/metabolismo , Desplegamiento Proteico , Conducta Social , Urocortinas/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Memoria
7.
J Neurosci ; 37(10): 2656-2672, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28148726

RESUMEN

Rhythmic neuronal activity of multiple frequency bands has been described in many brain areas and attributed to numerous brain functions. Among these, little is known about the mechanism and role of infra-slow oscillations, which have been demonstrated recently in the mouse accessory olfactory bulb (AOB). Along with prolonged responses to stimuli and distinct network connectivity, they inexplicably affect the AOB processing of social relevant stimuli. Here, we show that assemblies of AOB mitral cells are synchronized by lateral interactions through chemical and electrical synapses. Using a network model, we demonstrate that the synchronous oscillations in these assemblies emerge from interplay between intrinsic membrane properties and network connectivity. As a consequence, the AOB network topology, in which each mitral cell receives input from multiple glomeruli, enables integration of chemosensory stimuli over extended time scales by interglomerular synchrony of infra-slow bursting. These results provide a possible functional significance for the distinct AOB physiology and topology. Beyond the AOB, this study presents a general model for synchronous infra-slow bursting in neuronal networks.SIGNIFICANCE STATEMENT Infra-slow rhythmic neuronal activity with a very long (>10 s) duration has been described in many brain areas, but little is known about the role of this activity and the mechanisms that produce it. Here, we combine experimental and computational methods to show that synchronous infra-slow bursting activity in mitral cells of the mouse accessory olfactory bulb (AOB) emerges from interplay between intracellular dynamics and network connectivity. In this novel mechanism, slow intracellular Na+ dynamics endow AOB mitral cells with a weak tendency to burst, which is further enhanced and stabilized by chemical and electrical synapses between them. Combined with the unique topology of the AOB network, infra-slow bursting enables integration and binding of multiple chemosensory stimuli over a prolonged time scale.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Sincronización Cortical/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Animales , Conectoma/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología
8.
PLoS Biol ; 13(12): e1002319, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26674618

RESUMEN

Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions.


Asunto(s)
Dendritas/metabolismo , Modelos Neurológicos , Proteínas del Tejido Nervioso/metabolismo , Conducción Nerviosa , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Biología Computacional/métodos , Fenómenos Electrofisiológicos , Femenino , Activación del Canal Iónico , Cinética , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Fluorescente , Microscopía por Video , Neuronas/citología , Bulbo Olfatorio/citología , Análisis de la Célula Individual , Organismos Libres de Patógenos Específicos
9.
Neurobiol Learn Mem ; 124: 97-103, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169536

RESUMEN

The abilities to recognize individual animals of the same species and to distinguish them from other individuals are the basis for all mammalian social organizations and relationships. These abilities, termed social recognition memory, can be explored in mice and rats using their innate tendency to investigate novel social stimuli more persistently than familiar ones. Using this methodology it was found that social recognition memory is mediated by a specific neural network in the brain, the activity of which is modulated by several molecules, such the neuropeptides oxytocin and vasopressin. During the last 15 years several independent studies have revealed that social recognition memory of mice and rats depends upon their housing conditions. Specifically, long-term social recognition memory cannot be formed as shortly as few days following social isolation of the animal. This rapid and reversible impairment caused by acute social isolation seems to be specific to social memory and has not been observed in other types of memory. Here we review these studies and suggest that this unique system may serve for exploring of the mechanisms underlying the well-known negative effects of partial or perceived social isolation on human mental health.


Asunto(s)
Encéfalo/fisiología , Memoria a Largo Plazo/fisiología , Oxitocina/fisiología , Reconocimiento en Psicología/fisiología , Aislamiento Social , Vasopresinas/fisiología , Animales , Humanos , Ratones , Neuronas/fisiología , Ratas , Percepción Social
10.
Commun Biol ; 7(1): 2, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168971

RESUMEN

Mammalian social behavior is highly context-sensitive. Yet, little is known about the mechanisms that modulate social behavior according to its context. Recent studies have revealed a network of mostly limbic brain regions which regulates social behavior. We hypothesize that coherent theta and gamma rhythms reflect the organization of this network into functional sub-networks in a context-dependent manner. To test this concept, we simultaneously record local field potential (LFP) from multiple social brain regions in adult male mice performing three social discrimination tasks. While LFP rhythmicity across all tasks is dominated by a global internal state, the pattern of theta coherence between the various regions reflect the behavioral task more than other variables. Moreover, Granger causality analysis implicate the ventral dentate gyrus as a main player in coordinating the context-specific rhythmic activity. Thus, our results suggest that the pattern of coordinated rhythmic activity within the network reflects the subject's social context.


Asunto(s)
Ritmo Gamma , Ritmo Teta , Masculino , Ratones , Animales , Ritmo Teta/fisiología , Encéfalo/fisiología , Conducta Social , Mamíferos
11.
Neurosci Biobehav Rev ; 163: 105734, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796125

RESUMEN

This review addresses key findings on loneliness from the social, neurobiological and clinical fields. From a translational perspective, results from studies in humans and animals are included, with a focus on social interaction, mental and physical illness and the role of oxytocin in loneliness. In terms of social interactions, lonely individuals tend to exhibit a range of abnormal behaviors based on dysfunctional social cognitions that make it difficult for them to form meaningful relationships. Neurobiologically, a link has been established between loneliness and the hypothalamic peptide hormone oxytocin. Since social interactions and especially social touch regulate oxytocin signaling, lonely individuals may have an oxytocin imbalance, which in turn affects their health and well-being. Clinically, loneliness is a predictor of physical and mental illness and leads to increased morbidity and mortality. There is evidence that psychopathology is both a cause and a consequence of loneliness. The final section of this review summarizes the findings from social, neurobiological and clinical perspectives to present a new model of the complex construct of loneliness.

12.
J Neurosci ; 32(18): 6251-62, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22553031

RESUMEN

Many mammals rely on pheromones for mediating social interactions. Recent studies indicate that both the main olfactory system (MOS) and accessory olfactory system (AOS) detect and process pheromonal stimuli, yet the functional difference between these two chemosensory systems remains unclear. We hypothesized that the main functional distinction between the MOS and AOS is the type of sensory information processing performed by each system. Here we compared the electrophysiological responses of mitral cells recorded from the accessory olfactory bulb (AOB) and main olfactory bulb (MOB) in acute mouse brain slices to various stimuli and found them markedly different. The response of MOB mitral cells to brief (0.1 ms, 1-100 V) stimulation of their sensory afferents remained transient regardless of stimulus strength, whereas sufficiently strong stimuli evoked sustained firing in AOB mitral cells lasting up to several minutes. Using EPSC-like current injections (10-100 pA, 10 ms rise time constant, 5 s decay time constant) in the presence of various synaptic blockers (picrotoxin, CGP55845, APV, DNQX, E4CPG, and MSPG), we demonstrated that this difference is attributable to distinct intrinsic properties of the two neuronal populations. The AOB sustained responses were found to be mediated by calcium-activated nonselective cationic current induced by transient intense firing. This current was found to be at least partially mediated by TRPM4 channels activated by calcium influx. We hypothesize that the sustained activity of the AOS induces a new sensory state in the animal, reflecting its social context.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Bulbo Olfatorio/fisiología , Olfato/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Front Psychiatry ; 14: 1205199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409155

RESUMEN

Social interaction is a complex behavior which requires the individual to integrate various internal processes, such as social motivation, social recognition, salience, reward, and emotional state, as well as external cues informing the individual of others' behavior, emotional state and social rank. This complex phenotype is susceptible to disruption in humans affected by neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces of convergent evidence collected from studies of humans and rodents suggest that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, disruption of the PFC circuitry results in social behavior deficits symptomatic of ASD. Here, we review this evidence and describe various ethologically relevant social behavior tasks which could be employed with rodent models to study the role of the PFC in social interactions. We also discuss the evidence linking the PFC to pathologies associated with ASD. Finally, we address specific questions regarding mechanisms employed by the PFC circuitry that may result in atypical social interactions in rodent models, which future studies should address.

14.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106179

RESUMEN

Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.

15.
iScience ; 26(2): 105921, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36685037

RESUMEN

Social interactions involve both approach and avoidance toward specific individuals. Currently, the brain regions subserving these behaviors are not fully recognized. The anterior hypothalamic nucleus (AHN) is a poorly defined brain area, and recent studies have yielded contradicting conclusions regarding its behavioral role. Here we explored the role of AHN neuronal activity in regulating approach and avoidance actions during social interactions. Using electrophysiological recordings from behaving mice, we revealed that theta rhythmicity in the AHN is enhanced during affiliative interactions, but decreases during aversive ones. Moreover, the spiking activity of AHN neurons increased during the investigation of social stimuli, as compared to objects, and was modulated by theta rhythmicity. Finally, AHN optogenetic stimulation during social interactions augmented the approach toward stimuli associated with the stimulation. These results suggest the role for AHN neural activity in regulating approach behavior during social interactions, and for theta rhythmicity in mediating the valence of social stimuli.

16.
Cell Rep Methods ; 3(11): 100638, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37939710

RESUMEN

Vocalizations are pivotal in mammalian communication, especially in humans. Rodents accordingly rely on ultrasonic vocalizations (USVs) that reflect their internal state as a primary channel during social interactions. However, attributing vocalizations to specific individuals remains challenging, impeding internal state assessment. Rats emit 50-kHz USVs to indicate positive states and intensify sniffing during alertness and social interactions. Here, we present a method involving a miniature microphone attached to the rat nasal cavity that allows to capture both male and female individual rat vocalizations and sniffing patterns during social interactions. We found that while the emission of 50-kHz USVs increases during close interactions, these signals lack specific behavioral associations. Moreover, a previously unreported low-frequency vocalization type marking rat social interactions was uncovered. Finally, different dynamics of sniffing and vocalization activities point to distinct underlying internal states. Thus, our method facilitates the exploration of internal states concurrent with social behaviors.


Asunto(s)
Ultrasonido , Vocalización Animal , Humanos , Ratas , Animales , Masculino , Femenino , Conducta Social , Interacción Social , Mamíferos
17.
Nat Neurosci ; 26(12): 2237-2249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884748

RESUMEN

The amygdala is a brain region primarily associated with emotional response. The use of genetic markers and single-cell transcriptomics can provide insights into behavior-associated cell state changes. Here we present a detailed cell-type taxonomy of the adult mouse amygdala during fear learning and memory consolidation. We perform single-cell RNA sequencing on naïve and fear-conditioned mice, identify 130 neuronal cell types and validate their spatial distributions. A subset of all neuronal types is transcriptionally responsive to fear learning and memory retrieval. The activated engram cells upregulate activity-response genes and coordinate the expression of genes associated with neurite outgrowth, synaptic signaling, plasticity and development. We identify known and previously undescribed candidate genes responsive to fear learning. Our molecular atlas may be used to generate hypotheses to unveil the neuron types and neural circuits regulating the emotional component of learning and memory.


Asunto(s)
Amígdala del Cerebelo , Plasticidad Neuronal , Ratones , Animales , Plasticidad Neuronal/genética , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Neuronas/fisiología , Memoria/fisiología
18.
Curr Protoc ; 2(5): e399, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35536117

RESUMEN

Multi-site extracellular recordings from awake, freely moving rodents are an insightful technique that allows deduction of the dynamics of neural activity within a network of brain regions. Multiple advances in the design and materials of recording setups are available in the literature. However, most of these designs require several skill sets to assemble the electrodes and are expensive. Here, we explain in detail a custom design to build a multi-site (16 sites) electrode array (EA) and record extracellular electrical signals (local field potential and multi-unit spiking activity) at variable depths in freely behaving rodents. This EA weighs ∼3.0 g and costs less than $30. It provides mesoscopic neural activity maps (at millimeter scale) at low spatial resolution, thus enabling the experimenting group to further target specific regions with more expensive high-density probes at the resolution of an individual neuron. The article outlines the processes of building and implanting the array and recording neural activity during a behavior task. We also highlight the limitations of our design and the necessary steps to troubleshoot common issues faced during the initial implementation of the protocols. Finally, we explain the specific data one would obtain while using the probes during social interactions between rodents. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of the electrode array Basic Protocol 2: Surgical implantation of the electrode array Basic Protocol 3: Recording of neural activity from the electrode array while a mouse performs social investigation of a novel conspecific Basic Protocol 4: Histology and electrode registration.


Asunto(s)
Encéfalo , Roedores , Animales , Encéfalo/fisiología , Electrodos Implantados , Ratones , Neuronas/fisiología
19.
iScience ; 25(2): 103735, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35098101

RESUMEN

The survival of individuals of gregarious species depends on their social interactions. In humans, atypical social behavior is a hallmark of several psychopathological conditions, many of which have sex-specific manifestations. Various laboratory mouse strains are used to reveal the mechanisms mediating typical and atypical social behavior in mammals. Here, we used three social discrimination tests to characterize social behavior in males and females of three widely used laboratory mouse strains (C57BL/6J, BALB/c, and ICR). We found marked sex- and strain-specific differences in the behavior exhibited by subjects, in a test-dependent manner. Interestingly, some characteristics were strain-dependent, while others were sex-dependent. We then crossbred C57BL/6J and BALB/c mice and found that offspring of such crossbreeding exhibit social behavior which differs from both parental strains and depends on the specific combination of parental strains. Thus, social behavior of laboratory mice is sex- and strain-specific and depends on both genetic and environmental factors.

20.
Mol Autism ; 13(1): 41, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284353

RESUMEN

MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.


Asunto(s)
Trastorno del Espectro Autista , Roedores , Animales , Humanos , Conducta Social , Conducta Animal , Emociones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA