RESUMEN
Cancer genomics studies have identified thousands of putative cancer driver genes1. Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif2 from the α-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.
Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/genética , Genoma Humano/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Esferoides Celulares/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Secuencias de Aminoácidos , Animales , Carboxipeptidasas/antagonistas & inhibidores , Carboxipeptidasas/deficiencia , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Terapia Molecular Dirigida , Mutación , Fenotipo , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Esferoides Celulares/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are characterized by altered cognition and mood, brain functions that depend on information processing by cortical microcircuits. We hypothesized that psychiatric disorders would display cell type-specific transcriptional alterations in neuronal subpopulations that make up cortical microcircuits: excitatory pyramidal (PYR) neurons and vasoactive intestinal peptide- (VIP), somatostatin- (SST), and parvalbumin- (PVALB) expressing inhibitory interneurons. Using laser capture microdissection followed by RNA sequencing (LCM-seq), we performed cell type-specific molecular profiling of subgenual anterior cingulate cortex, a region implicated in mood and cognitive control. We sequenced libraries from 130 whole cells pooled per neuronal subtype (VIP, SST, PVALB, superficial and deep PYR) in 76 subjects from the University of Pittsburgh Brain Tissue Donation Program, evenly split between MDD, BD and SCZ subjects and healthy controls (totaling 380 bulk transcriptomes from ~50,000 neurons). We identified hundreds of differentially expressed (DE) genes and biological pathways across disorders and neuronal subtypes, with the vast majority in interneurons, particularly PVALB. While DE genes were unique to each cell type, there was a partial overlap across disorders for genes involved in the formation and maintenance of neuronal circuits. We observed coordinated alterations in biological pathways between select pairs of microcircuit cell types, also partially shared across disorders. Finally, DE genes coincided with known risk variants from psychiatric genome-wide association studies, suggesting cell type-specific convergence between genetic and transcriptomic risk for psychiatric disorders. Our study suggests transdiagnostic cortical microcircuit pathology in SCZ, BD, and MDD and sets the stage for larger-scale studies investigating how cell circuit-based changes contribute to shared psychiatric risk.
RESUMEN
The extent of shared and distinct neural mechanisms underlying major depressive disorder (MDD), anxiety, and stress-related disorders is still unclear. We compared the neural signatures of these disorders in 5,405 UK Biobank patients and 21,727 healthy controls. We found the greatest casecontrol differences in resting-state functional connectivity and cortical thickness in MDD, followed by anxiety and stress-related disorders. Neural signatures for MDD and anxiety disorders were highly concordant, whereas stress-related disorders showed a distinct pattern. Controlling for cross-disorder genetic risk somewhat decreased the similarity between functional neural signatures of stress-related disorders and both MDD and anxiety disorders. Among cases and healthy controls, reduced within-network and increased between-network frontoparietal and default mode connectivity were associated with poorer cognitive performance (processing speed, attention, associative learning, and fluid intelligence). These results provide evidence for distinct neural circuit function impairments in MDD and anxiety disorders compared to stress disorders, yet cognitive impairment appears unrelated to diagnosis and varies with circuit function.
Asunto(s)
Trastornos de Ansiedad , Encéfalo , Trastorno Depresivo Mayor , Vías Nerviosas , Estrés Psicológico , Trastornos de Ansiedad/diagnóstico por imagen , Trastornos de Ansiedad/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Humanos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Estrés Psicológico/diagnóstico por imagen , Estrés Psicológico/fisiopatologíaRESUMEN
Many neuropsychiatric disorders are characterised by altered cortical thickness, but the cell types underlying these changes remain largely unknown. Virtual histology (VH) approaches map regional patterns of gene expression with regional patterns of MRI-derived phenotypes, such as cortical thickness, to identify cell types associated with case-control differences in those MRI measures. However, this method does not incorporate valuable information of case-control differences in cell type abundance. We developed a novel method, termed case-control virtual histology (CCVH), and applied it to Alzheimer's disease (AD) and dementia cohorts. Leveraging a multi-region gene expression dataset of AD cases (n = 40) and controls (n = 20), we quantified AD case-control differential expression of cell type-specific markers across 13 brain regions. We then correlated these expression effects with MRI-derived AD case-control cortical thickness differences across the same regions. Cell types with spatially concordant AD-related effects were identified through resampling marker correlation coefficients. Among regions thinner in AD, gene expression patterns identified by CCVH suggested fewer excitatory and inhibitory neurons, and greater proportions of astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor cells, and endothelial cells in AD cases vs. controls. In contrast, original VH identified expression patterns suggesting that excitatory but not inhibitory neuron abundance was associated with thinner cortex in AD, despite the fact that both types of neurons are known to be lost in the disorder. Compared to original VH, cell types identified through CCVH are more likely to directly underlie cortical thickness differences in AD. Sensitivity analyses suggest our results are largely robust to specific analysis choices, like numbers of cell type-specific marker genes used and background gene sets used to construct null models. As more multi-region brain expression datasets become available, CCVH will be useful for identifying the cellular correlates of cortical thickness across neuropsychiatric illnesses.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Células Endoteliales/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Estudios de Casos y ControlesRESUMEN
BACKGROUND: Our understanding of major depression is complicated by substantial heterogeneity in disease presentation, which can be disentangled by data-driven analyses of depressive symptom dimensions. We aimed to determine the clinical portrait of such symptom dimensions among individuals in the community. METHODS: This cross-sectional study consisted of 25 261 self-reported White UK Biobank participants with major depression. Nine questions from the UK Biobank Mental Health Questionnaire encompassing depressive symptoms were decomposed into underlying factors or 'symptom dimensions' via factor analysis, which were then tested for association with psychiatric diagnoses and polygenic risk scores for major depressive disorder (MDD), bipolar disorder and schizophrenia. Replication was performed among 655 self-reported non-White participants, across sexes, and among 7190 individuals with an ICD-10 code for MDD from linked inpatient or primary care records. RESULTS: Four broad symptom dimensions were identified, encompassing negative cognition, functional impairment, insomnia and atypical symptoms. These dimensions replicated across ancestries, sexes and individuals with inpatient or primary care MDD diagnoses, and were also consistent among 43 090 self-reported White participants with undiagnosed self-reported depression. Every dimension was associated with increased risk of nearly every psychiatric diagnosis and polygenic risk score. However, while certain psychiatric diagnoses were disproportionately associated with specific symptom dimensions, the three polygenic risk scores did not show the same specificity of associations. CONCLUSIONS: An analysis of questionnaire data from a large community-based cohort reveals four replicable symptom dimensions of depression with distinct clinical, but not genetic, correlates.
Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/complicaciones , Depresión/genética , Estudios Transversales , Predisposición Genética a la Enfermedad , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/epidemiología , Trastorno Bipolar/complicaciones , Herencia MultifactorialRESUMEN
Genome-wide association studies have discovered hundreds of genomic loci associated with psychiatric traits, but the causal genes underlying these associations are often unclear, a research gap that has hindered clinical translation. Here, we present a Psychiatric Omnilocus Prioritization Score (PsyOPS) derived from just three binary features encapsulating high-level assumptions about psychiatric disease etiology - namely, that causal psychiatric disease genes are likely to be mutationally constrained, be specifically expressed in the brain, and overlap with known neurodevelopmental disease genes. To our knowledge, PsyOPS is the first method specifically tailored to prioritizing causal genes at psychiatric GWAS loci. We show that, despite its extreme simplicity, PsyOPS achieves state-of-the-art performance at this task, comparable to a prior domain-agnostic approach relying on tens of thousands of features. Genes prioritized by PsyOPS are substantially more likely than other genes at the same loci to have convergent evidence of direct regulation by the GWAS variant according to both DNA looping assays and expression or splicing quantitative trait locus (QTL) maps. We provide examples of genes hundreds of kilobases away from the lead variant, like GABBR1 for schizophrenia, that are prioritized by all three of PsyOPS, DNA looping and QTLs. Our results underscore the power of incorporating high-level knowledge of trait etiology into causal gene prediction at GWAS loci, and comprise a resource for researchers interested in experimentally characterizing psychiatric gene candidates.
Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , ADN , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genéticaRESUMEN
BACKGROUND: Adolescence is a key period for brain development and the emergence of psychopathology. The Adolescent Brain Cognitive Development (ABCD) study was created to study the biopsychosocial factors underlying healthy and pathological brain development during this period, and comprises the world's largest youth cohort with neuroimaging, family history and genetic data. METHODS: We examined 9856 unrelated 9-to-10-year-old participants in the ABCD study drawn from 21 sites across the United States, of which 7662 had multimodal magnetic resonance imaging scans passing quality control, and 4447 were non-Hispanic white and used for polygenic risk score analyses. Using data available at baseline, we associated eight 'syndrome scale scores' from the Child Behavior Checklist-summarizing anxious/depressed symptoms, withdrawn/depressed symptoms, somatic complaints, social problems, thought problems, attention problems, rule-breaking behavior, and aggressive behavior-with resting-state functional and structural brain magnetic resonance imaging measures; eight indicators of family history of psychopathology; and polygenic risk scores for major depression, bipolar disorder, schizophrenia, attention deficit hyperactivity disorder (ADHD) and anorexia nervosa. As a sensitivity analysis, we excluded participants with clinically significant (>97th percentile) or borderline (93rd-97th percentile) scores for each dimension. RESULTS: Most Child Behavior Checklist dimensions were associated with reduced functional connectivity within one or more of four large-scale brain networks-default mode, cingulo-parietal, dorsal attention, and retrosplenial-temporal. Several dimensions were also associated with increased functional connectivity between the default mode, dorsal attention, ventral attention and cingulo-opercular networks. Conversely, almost no global or regional brain structural measures were associated with any of the dimensions. Every family history indicator was associated with every dimension. Major depression polygenic risk was associated with six of the eight dimensions, whereas ADHD polygenic risk was exclusively associated with attention problems and externalizing behavior (rule-breaking and aggressive behavior). Bipolar disorder, schizophrenia and anorexia nervosa polygenic risk were not associated with any of the dimensions. Many associations remained statistically significant even after excluding participants with clinically significant or borderline psychopathology, suggesting that the same risk factors that contribute to clinically significant psychopathology also contribute to continuous variation within the clinically normal range. CONCLUSIONS: This study codifies neurobiological, familial and genetic risk factors for dimensional psychopathology across a population-scale cohort of community-dwelling preadolescents. Future efforts are needed to understand how these multiple modalities of risk intersect to influence trajectories of psychopathology into late adolescence and adulthood.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Encéfalo , Adolescente , Adulto , Niño , Cognición , Humanos , Imagen por Resonancia Magnética , Psicopatología , Factores de RiesgoRESUMEN
Transitions from health to disease are characterized by dysregulation of biological networks under the influence of genetic and environmental factors, often over the course of years to decades before clinical symptoms appear. Understanding these dynamics has important implications for preventive medicine. However, progress has been hindered both by the difficulty of identifying individuals who will eventually go on to develop a particular disease and by the inaccessibility of most disease-relevant tissues in living individuals. Here we developed an alternative approach using polygenic risk scores (PRSs) based on genome-wide association studies (GWAS) for 54 diseases and complex traits coupled with multiomic profiling and found that these PRSs were associated with 766 detectable alterations in proteomic, metabolomic, and standard clinical laboratory measurements (clinical labs) from blood plasma across several thousand mostly healthy individuals. We recapitulated a variety of known relationships (e.g., glutamatergic neurotransmission and inflammation with depression, IL-33 with asthma) and found associations directly suggesting therapeutic strategies (e.g., Ω-6 supplementation and IL-13 inhibition for amyotrophic lateral sclerosis) and influences on longevity (leukemia inhibitory factor, ceramides). Analytes altered in high-genetic-risk individuals showed concordant changes in disease cases, supporting the notion that PRS-associated analytes represent presymptomatic disease alterations. Our results provide insights into the molecular pathophysiology of a range of traits and suggest avenues for the prevention of health-to-disease transitions.
Asunto(s)
Biomarcadores/sangre , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedades Asintomáticas/epidemiología , Estudios de Cohortes , Bases de Datos Genéticas , Progresión de la Enfermedad , Pruebas Genéticas/métodos , Humanos , Metabolómica/métodos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Proteómica/métodos , Factores de RiesgoRESUMEN
Protein-altering variants that are protective against human disease provide in vivo validation of therapeutic targets. Here we use genotyping data from UK Biobank (n = 337,151 unrelated White British individuals) and FinnGen (n = 176,899) to conduct a search for protein-altering variants conferring lower intraocular pressure (IOP) and protection against glaucoma. Through rare protein-altering variant association analysis, we find a missense variant in ANGPTL7 in UK Biobank (rs28991009, p.Gln175His, MAF = 0.8%, genotyped in 82,253 individuals with measured IOP and an independent set of 4,238 glaucoma patients and 250,660 controls) that significantly lowers IOP (ß = -0.53 and -0.67 mmHg for heterozygotes, -3.40 and -2.37 mmHg for homozygotes, P = 5.96 x 10-9 and 1.07 x 10-13 for corneal compensated and Goldman-correlated IOP, respectively) and is associated with 34% reduced risk of glaucoma (P = 0.0062). In FinnGen, we identify an ANGPTL7 missense variant at a greater than 50-fold increased frequency in Finland compared with other populations (rs147660927, p.Arg220Cys, MAF Finland = 4.3%), which was genotyped in 6,537 glaucoma patients and 170,362 controls and is associated with a 29% lower glaucoma risk (P = 1.9 x 10-12 for all glaucoma types and also protection against its subtypes including exfoliation, primary open-angle, and primary angle-closure). We further find three rarer variants in UK Biobank, including a protein-truncating variant, which confer a strong composite lowering of IOP (P = 0.0012 and 0.24 for Goldman-correlated and corneal compensated IOP, respectively), suggesting the protective mechanism likely resides in the loss of interaction or function. Our results support inhibition or down-regulation of ANGPTL7 as a therapeutic strategy for glaucoma.
Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Glaucoma/genética , Glaucoma/prevención & control , Presión Intraocular/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Proteína 7 Similar a la Angiopoyetina , Bancos de Muestras Biológicas/estadística & datos numéricos , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Finlandia/epidemiología , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Glaucoma/epidemiología , Humanos , Mutación con Pérdida de Función/genética , Masculino , Persona de Mediana Edad , Mutación Missense , Reino Unido/epidemiologíaRESUMEN
The hypothesis that infectious agents, particularly herpesviruses, contribute to Alzheimer's disease (AD) pathogenesis has been investigated for decades but has long engendered controversy. In the past 3 years, several studies in mouse models, human tissue models, and population cohorts have reignited interest in this hypothesis. Collectively, these studies suggest that many of the hallmarks of AD, like amyloid beta production and neuroinflammation, can arise as a protective response to acute infection that becomes maladaptive in the case of chronic infection. We place this work in its historical context and explore its etiological implications.
Asunto(s)
Enfermedad de Alzheimer , Herpesviridae , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , RatonesRESUMEN
BACKGROUND: Sleep problems are both symptoms of and modifiable risk factors for many psychiatric disorders. Wrist-worn accelerometers enable objective measurement of sleep at scale. Here, we aimed to examine the association of accelerometer-derived sleep measures with psychiatric diagnoses and polygenic risk scores in a large community-based cohort. METHODS AND FINDINGS: In this post hoc cross-sectional analysis of the UK Biobank cohort, 10 interpretable sleep measures-bedtime, wake-up time, sleep duration, wake after sleep onset, sleep efficiency, number of awakenings, duration of longest sleep bout, number of naps, and variability in bedtime and sleep duration-were derived from 7-day accelerometry recordings across 89,205 participants (aged 43 to 79, 56% female, 97% self-reported white) taken between 2013 and 2015. These measures were examined for association with lifetime inpatient diagnoses of major depressive disorder, anxiety disorders, bipolar disorder/mania, and schizophrenia spectrum disorders from any time before the date of accelerometry, as well as polygenic risk scores for major depression, bipolar disorder, and schizophrenia. Covariates consisted of age and season at the time of the accelerometry recording, sex, Townsend deprivation index (an indicator of socioeconomic status), and the top 10 genotype principal components. We found that sleep pattern differences were ubiquitous across diagnoses: each diagnosis was associated with a median of 8.5 of the 10 accelerometer-derived sleep measures, with measures of sleep quality (for instance, sleep efficiency) generally more affected than mere sleep duration. Effect sizes were generally small: for instance, the largest magnitude effect size across the 4 diagnoses was ß = -0.11 (95% confidence interval -0.13 to -0.10, p = 3 × 10-56, FDR = 6 × 10-55) for the association between lifetime inpatient major depressive disorder diagnosis and sleep efficiency. Associations largely replicated across ancestries and sexes, and accelerometry-derived measures were concordant with self-reported sleep properties. Limitations include the use of accelerometer-based sleep measurement and the time lag between psychiatric diagnoses and accelerometry. CONCLUSIONS: In this study, we observed that sleep pattern differences are a transdiagnostic feature of individuals with lifetime mental illness, suggesting that they should be considered regardless of diagnosis. Accelerometry provides a scalable way to objectively measure sleep properties in psychiatric clinical research and practice, even across tens of thousands of individuals.
Asunto(s)
Acelerometría/instrumentación , Bancos de Muestras Biológicas , Trastornos Mentales/fisiopatología , Sueño/fisiología , Adulto , Anciano , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Herencia Multifactorial , Reproducibilidad de los Resultados , Factores de Riesgo , Autoinforme , Reino UnidoRESUMEN
BACKGROUND: Lifestyle interventions to reduce body mass index (BMI) are critical public health strategies for type 2 diabetes prevention. While weight loss interventions have shown demonstrable benefit for high-risk and prediabetic individuals, we aimed to determine whether the same benefits apply to those at lower risk. METHODS AND FINDINGS: We performed a multi-stratum Mendelian randomization study of the effect size of BMI on diabetes odds in 287,394 unrelated individuals of self-reported white British ancestry in the UK Biobank, who were recruited from across the United Kingdom from 2006 to 2010 when they were between the ages of 40 and 69 years. Individuals were stratified on the following diabetes risk factors: BMI, diabetes family history, and genome-wide diabetes polygenic risk score. The main outcome measure was the odds ratio of diabetes per 1-kg/m2 BMI reduction, in the full cohort and in each stratum. Diabetes prevalence increased sharply with BMI, family history of diabetes, and genetic risk. Conversely, predicted risk reduction from weight loss was strikingly similar across BMI and genetic risk categories. Weight loss was predicted to substantially reduce diabetes odds even among lower-risk individuals: for instance, a 1-kg/m2 BMI reduction was associated with a 1.37-fold reduction (95% CI 1.12-1.68) in diabetes odds among non-overweight individuals (BMI < 25 kg/m2) without a family history of diabetes, similar to that in obese individuals (BMI ≥ 30 kg/m2) with a family history (1.21-fold reduction, 95% CI 1.13-1.29). A key limitation of this analysis is that the BMI-altering DNA sequence polymorphisms it studies represent cumulative predisposition over an individual's entire lifetime, and may consequently incorrectly estimate the risk modification potential of weight loss interventions later in life. CONCLUSIONS: In a population-scale cohort, lower BMI was consistently associated with reduced diabetes risk across BMI, family history, and genetic risk categories, suggesting all individuals can substantially reduce their diabetes risk through weight loss. Our results support the broad deployment of weight loss interventions to individuals at all levels of diabetes risk.
Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Herencia Multifactorial/genética , Obesidad/epidemiología , Adulto , Anciano , Bancos de Muestras Biológicas/estadística & datos numéricos , Índice de Masa Corporal , Femenino , Humanos , Masculino , Análisis de la Aleatorización Mendeliana/métodos , Persona de Mediana Edad , Factores de Riesgo , Reino Unido/epidemiologíaRESUMEN
In many human diseases, associated genetic changes tend to occur within noncoding regions, whose effect might be related to transcriptional control. A central goal in human genetics is to understand the function of such noncoding regions: given a region that is statistically associated with changes in gene expression (expression quantitative trait locus [eQTL]), does it in fact play a regulatory role? And if so, how is this role "coded" in its sequence? These questions were the subject of the Critical Assessment of Genome Interpretation eQTL challenge. Participants were given a set of sequences that flank eQTLs in humans and were asked to predict whether these are capable of regulating transcription (as evaluated by massively parallel reporter assays), and whether this capability changes between alternative alleles. Here, we report lessons learned from this community effort. By inspecting predictive properties in isolation, and conducting meta-analysis over the competing methods, we find that using chromatin accessibility and transcription factor binding as features in an ensemble of classifiers or regression models leads to the most accurate results. We then characterize the loci that are harder to predict, putting the spotlight on areas of weakness, which we expect to be the subject of future studies.
Asunto(s)
Biología Computacional/métodos , Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Sitios de Carácter CuantitativoRESUMEN
BACKGROUND: Alternative mRNA splicing is critical to proteomic diversity and tissue and species differentiation. Exclusion of cassette exons, also called exon skipping, is the most common type of alternative splicing in mammals. RESULTS: We present a computational model that predicts absolute (though not tissue-differential) percent-spliced-in of cassette exons more accurately than previous models, despite not using any 'hand-crafted' biological features such as motif counts. We achieve nearly identical performance using only the conservation score (mammalian phastCons) of each splice junction normalized by average conservation over 100 bp of the corresponding flanking intron, demonstrating that conservation is an unexpectedly powerful indicator of alternative splicing patterns. Using this method, we provide evidence that intronic splicing regulation occurs predominantly within 100 bp of the alternative splice sites and that conserved elements in this region are, as expected, functioning as splicing regulators. We show that among conserved cassette exons, increased conservation of flanking introns is associated with reduced inclusion. We also propose a new definition of intronic splicing regulatory elements (ISREs) that is independent of conservation, and show that most ISREs do not match known binding sites or splicing factors despite being predictive of percent-spliced-in. CONCLUSIONS: These findings suggest that one mechanism for the evolutionary transition from constitutive to alternative splicing is the emergence of cis-acting splicing inhibitors. The association of our ISREs with differences in splicing suggests the existence of novel RNA-binding proteins and/or novel splicing roles for known RNA-binding proteins.
Asunto(s)
Empalme Alternativo , Evolución Molecular , Modelos Biológicos , Animales , Área Bajo la Curva , Encéfalo/metabolismo , Exones , Regulación de la Expresión Génica , Humanos , Intrones , Especificidad de Órganos/genética , Sitios de Empalme de ARN , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Asunto(s)
Conectoma , Adulto , Humanos , Estudio de Asociación del Genoma Completo , Semaforina-3A , Genes Reguladores , Encéfalo/diagnóstico por imagen , Proteínas Quinasas , Proteínas Represoras , Proteínas de Microfilamentos , Péptidos y Proteínas de Señalización IntracelularRESUMEN
BACKGROUND: Genome-wide association studies (GWAS) have indicated moderate genetic overlap between Alzheimer's disease (AD) and related dementias (ADRD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), neurodegenerative disorders traditionally considered etiologically distinct. However, the specific genetic variants and loci underlying this overlap remain almost entirely unknown. METHODS: We leveraged state-of-the-art GWAS for ADRD, PD, and ALS. For each pair of disorders, we examined each of the GWAS hits for one disorder and tested whether they were also significant for the other disorder, applying Bonferroni correction for the number of variants tested. This approach rigorously controls the family-wise error rate for both disorders, analogously to genome-wide significance. RESULTS: Eleven loci with GWAS hits for one disorder were also associated with one or both of the other disorders: one with all three disorders (the MAPT/KANSL1 locus), five with ADRD and PD (near LCORL, CLU, SETD1A/KAT8, WWOX, and GRN), three with ADRD and ALS (near GPX3, HS3ST5/HDAC2/MARCKS, and TSPOAP1), and two with PD and ALS (near GAK/TMEM175 and NEK1). Two of these loci (LCORL and NEK1) were associated with an increased risk of one disorder but decreased risk of another. Colocalization analysis supported a shared causal variant between ADRD and PD at the CLU, WWOX, and LCORL loci, between ADRD and ALS at the TSPOAP1 locus, and between PD and ALS at the NEK1 and GAK/TMEM175 loci. To address the concern that ADRD is an imperfect proxy for AD and that the ADRD and PD GWAS have overlapping participants (nearly all of which are from the UK Biobank), we confirmed that all our ADRD associations had nearly identical odds ratios in an AD GWAS that excluded the UK Biobank, and all but one remained nominally significant (p < 0.05) for AD. CONCLUSIONS: In one of the most comprehensive investigations to date of pleiotropy between neurodegenerative disorders, we identify eleven genetic risk loci shared among ADRD, PD, and ALS. These loci support lysosomal/autophagic dysfunction (GAK/TMEM175, GRN, KANSL1), neuroinflammation/immunity (TSPOAP1), oxidative stress (GPX3, KANSL1), and the DNA damage response (NEK1) as transdiagnostic processes underlying multiple neurodegenerative disorders.
Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Parkinson/genética , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad/genética , Enfermedades Neurodegenerativas/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Sleep and depression have a complex, bidirectional relationship, with sleep-associated alterations in brain dynamics and structure impacting a range of symptoms and cognitive abilities. Previous work describing these relationships has provided an incomplete picture by investigating only one or two types of sleep measures, depression, or neuroimaging modalities in parallel. We analyze the correlations between brainwide neural signatures of sleep, cognition, and depression in task and resting-state data from over 30,000 individuals from the UK Biobank and Human Connectome Project. Neural signatures of insomnia and depression are negatively correlated with those of sleep duration measured by accelerometer in the task condition but positively correlated in the resting-state condition. Our results show that resting-state neural signatures of insomnia and depression resemble that of rested wakefulness. This is further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state data in association with insomnia and depression. These observations dispute conventional assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may explain inconsistent findings in the literature.
Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sueño , CogniciónRESUMEN
BACKGROUND: The bidirectional relationship between sleep disturbances and depression is well documented, yet the biology of sleep is not fully understood. Mitochondria have become of interest not only because of the connection between sleep and metabolism but also because of mitochondria's involvement in the production of reactive oxygen species, which are largely scavenged during sleep. METHODS: Genome-wide association studies (GWAS) of eight accelerometry-derived sleep measures were performed across both the autosomal and mitochondrial DNA (mtDNA) among two severity levels of depression in UK Biobank participants. We calculated SNP heritability for each of the sleep measures. Linear regression was performed to test associations and mitochondrial haplogroups. RESULTS: Variants included in the GWAS accounted for moderate heritability of bedtime (19.6%, p = 4.75 × 10-7), sleep duration (16.6%, p = 8.58 × 10-6) and duration of longest sleep bout (22.6%, p = 4.64 × 10-4). No variants passed genome-wide significance in the autosomal genome. The top hit in the severe depression sample was rs145019802, near GOLGA8B, for sleep efficiency (p = 1.17 × 10-7), and the top hit in the broad depression sample was rs7100859, an intergenic SNP, and nap duration (p = 1.25 × 10-7). Top mtDNA loci were m.12633C > A of MT-ND5 with bedtime (p = 0.002) in the severe sample and m.16186C > T of the control region with nap duration (p = 0.002) in the broad sample. CONCLUSION: SNP heritability estimates support the involvement of common SNPs in specific sleep measures among depressed individuals. This is the first study to analyze mtDNA variance in sleep measures in depressed individuals. Our mtDNA findings, although nominally significant, provide preliminary suggestion that mitochondria are involved in sleep.
Asunto(s)
ADN Mitocondrial , Estudio de Asociación del Genoma Completo , Humanos , ADN Mitocondrial/genética , Bancos de Muestras Biológicas , Sueño/genética , Mitocondrias , Acelerometría , Polimorfismo de Nucleótido Simple/genética , Reino UnidoRESUMEN
BACKGROUND: Sex is seldom considered as a potential moderator of the impact of bipolar disorder (BD) on cardiovascular disease (CVD) risk. We aimed to characterize the sex-specific association of CVD and BD using data from the UK Biobank. METHODS: In a cross-sectional analysis, we compared the odds ratio between women and men with BD for seven CVD diagnoses (coronary artery disease, myocardial infarction, angina, atrial fibrillation, heart failure, stroke, and essential hypertension) and four cardiovascular biomarkers (arterial stiffness index, low-density lipoprotein, C-reactive protein, and HbA1c) in 293 participants with BD and 257,380 psychiatrically healthy controls in the UK Biobank. RESULTS: After adjusting for age, we found a two- to three-fold stronger association among women than among men between BD and rates of coronary artery disease, heart failure, and essential hypertension, with a significant sex-by-diagnosis interactions. The association remained significant after controlling for self-reported race, education, income, and smoking status. After controlling for potential confounders, there was no significant association between sex and any cardiovascular biomarkers. LIMITATIONS: These analyses could not disentangle effects of BD from its treatment. CONCLUSIONS: Our results underscore the importance of incorporating sex and mental illness in risk estimation tools for CVD, and improving screening for, and timely treatment of, CVD in those with BD. Future research is needed to better understand the contributors and mechanisms of sex differences related to CVD risk in BD.
Asunto(s)
Trastorno Bipolar , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Humanos , Femenino , Masculino , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/epidemiología , Trastorno Bipolar/complicaciones , Estudios Transversales , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/complicaciones , Bancos de Muestras Biológicas , Enfermedad de la Arteria Coronaria/complicaciones , Hipertensión Esencial , Biomarcadores , Reino Unido/epidemiología , Factores de RiesgoRESUMEN
A surprising and well-replicated result in genetic studies of human longevity is that centenarians appear to carry disease-associated variants in numbers similar to the general population. With the proliferation of large genome-wide association studies (GWAS) in recent years, investigators have turned to polygenic scores to leverage GWAS results into a measure of genetic risk that can better predict the risk of disease than individual significant variants alone. We selected 54 polygenic risk scores (PRSs) developed for a variety of outcomes, and we calculated their values in individuals from the New England Centenarian Study (NECS, N = 4886) and the Long Life Family Study (LLFS, N = 4577). We compared the distribution of these PRSs among exceptionally long-lived individuals (ELLI), their offspring, and controls, and we also examined their predictive values, using t-tests and regression models adjusting for sex and principal components reflecting the ancestral background of the individuals (PCs). In our analyses, we controlled for multiple testing using a Bonferroni-adjusted threshold for 54 traits. We found that only 4 of the 54 PRSs differed between ELLIs and controls in both cohorts. ELLIs had significantly lower mean PRSs for Alzheimer's disease (AD) and coronary artery disease (CAD) than controls, suggesting a genetic predisposition to extreme longevity may be mediated by reduced susceptibility to these traits. ELLIs also had significantly higher mean PRSs for improved cognitive function and parental extreme longevity. In addition, the PRS for AD was associated with a higher risk of dementia among controls but not ELLIs (p = 0.003, 0.3 in NECS, p = 0.03, 0.9 in LLFS, respectively). ELLIs have a similar burden of genetic disease risk as the general population for most traits but have a significantly lower genetic risk of AD and CAD. The lack of association between AD PRS and dementia among ELLIs suggests that the genetic risk for AD that they do have is somehow counteracted by protective genetic or environmental factors.