Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Tumour Biol ; 37(9): 12465-12475, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27333991

RESUMEN

Despite improvements in treatment strategies, colorectal cancer (CRC) still has high mortality rates. Most CRCs develop from adenopolyps via the adenoma-carcinoma sequence. A mechanism for inhibition of this sequence in individuals with a high risk of developing CRC is urgently needed. Differential studies of mitochondrial (mt) gene expressions in the progressive stages of CRC with villous architecture are warranted to reveal early risk assessments and new targets for chemoprevention of the disease. In the present study, reverse transcription-quantitative PCR (RT-qPCR) was used to determine the relative amount of the transcripts of six mt genes [MT-RNR1, MT-ND1, MT-COI, MT-ATP6, MT-ND6, and MT-CYB (region 648-15887)] which are involved in the normal metabolism of mitochondria. A total of 42 pairs of tissue samples obtained from colorectal adenopolyps, adenocarcinomas, and their corresponding adjacent normal tissues were examined. Additionally, electron transport chain (ETC), complexes I (NADH: ubiquinone oxidoreductase) and III (CoQH2-cytochrome C reductase), and carbonyl protein group contents were analyzed. Results indicate that there were differential expressions of the six mt genes and elevated carbonyl protein contents among the colorectal adenopolyps compared to their paired adjacent normal tissues (p < 0.05). The levels of complexes I and III were higher in tumor tissues relative to adjacent normal tissues. Noticeably, the expression of MT-COI was overexpressed in late colorectal carcinomas among all studied transcripts. Our data suggest that increased expressions in certain mt genes and elevated levels of ROS may potentially play a critical role in the colorectal tumors evolving from adenopolyps to malignant lesions.


Asunto(s)
Neoplasias Colorrectales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , NADH Deshidrogenasa/genética , ARN Ribosómico/genética , Anciano , Neoplasias Colorrectales/etiología , Citocromos b/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo
2.
Front Mol Biosci ; 10: 1273046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028538

RESUMEN

Hematopoiesis is an essential process for organismal development and homeostasis. Epigenetic regulation of gene expression is critical for stem cell self-renewal and differentiation in normal hematopoiesis. Increasing evidence shows that disrupting the balance between self-renewal and cell fate decisions can give rise to hematological diseases such as bone marrow failure and leukemia. Consequently, next-generation sequencing studies have identified various aberrations in histone modifications, DNA methylation, RNA splicing, and RNA modifications in hematologic diseases. Favorable outcomes after targeting epigenetic regulators during disease states have further emphasized their importance in hematological malignancy. However, these targeted therapies are only effective in some patients, suggesting that further research is needed to decipher the complexity of epigenetic regulation during hematopoiesis. In this review, an update on the impact of the epigenome on normal hematopoiesis, disease initiation and progression, and current therapeutic advancements will be discussed.

3.
Nat Commun ; 14(1): 809, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781850

RESUMEN

Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Complejo de la Endopetidasa Proteasomal , Lactante , Adulto , Humanos , Niño , Complejo de la Endopetidasa Proteasomal/genética , Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma
4.
Cell Rep ; 41(11): 111825, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516770

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.


Asunto(s)
Hematopoyesis , Pez Cebra , Ratones , Humanos , Animales , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Pez Cebra/metabolismo , Hematopoyesis/genética , Empalme del ARN/genética , Células Madre Hematopoyéticas/metabolismo , Mutación/genética , Fosfoproteínas/metabolismo , Factor de Transcripción STAT3/genética
5.
Cancer Res J (N Y N Y) ; 9(1): 23-33, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33628862

RESUMEN

Colorectal tumors are mostly of epithelial origin and represent a wide spectrum of neoplasms. About 97% of colorectal cancer originating from benign lesions of adenomatous polyps are adenocarcinomas. Reactive oxygen species (ROS) generating from mitochondrial DNA (mtDNA) mutations and microRNAs (miRNAs) are associated with oncogene and tumor suppressor genes regulation which are known to parallel the tissue abnormalities involved with tumorigenesis such as colorectal adenoma to adenocarcinoma. However, the differential expression patterns of mitochondrial associated microRNAs (referred as MitomiRs) among colorectal adenomatous polyps progression is yet to be determined. Thus, the aim of this study was to determine the differential expressions profiles of MitomiRs (miR-24, miR-181, miR-210, miR-21 and miR378) in patients with colorectal adenomatous polyps tissues in correlation with clinicopathological tumor architectures of tubular, tubulovillous, villous adenomas and adenocarcinomas. Isolation of mitochondria RNA from colorectal adenomatous polyps, adenocarcinomas, and normal adjacent tissue samples was performed and assessed for mitochondrial associated miRNAs expression differences using quantitative reverse transcription PCR. Data from this study demonstrates that mitochondria genome expression of mitomiRNAs; miR-24, miR-181, miR-210, miR-21 and miR-378 in colorectal tissue samples varies among the adenomatous polyps. Expression of mitomiRNAs 24, 181, 210 and 378 progressively increased from the precancerous of adenomatous polyps to adenocarcinoma. In addition, miR-210 and miR-181 expression increased 3 folds in villous adenomas and greater than 3 folds increased in miR378 in adenocarcinoma (p < 0.005) when compared to tubular adenoma. Meanwhile, miR-21 increased progressively in adenoma tissues but decreased almost 2.5 folds in adenocarcinomas when compared to villous adenoma tissues (p < 0.001). These results suggest mitomiRs may regulate important mitochondrial functional pathways leading to a more favorable environment for transformation or progression of colorectal adenomatous polyps into adenocarcinomas.

6.
Cancer Cell ; 38(3): 297-300, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32931736

RESUMEN

We stand against racism and discrimination in cancer research in the U.S. By sharing the stories of scientists from different ethnicities, identities, and national origins, we want to promote change through mentoring, active participation, and policy changes and to inspire the next generation of cancer researchers: we make better science together.


Asunto(s)
Investigación Biomédica/estadística & datos numéricos , Diversidad Cultural , Etnicidad/estadística & datos numéricos , Tutoría/estadística & datos numéricos , Neoplasias/terapia , Investigadores/estadística & datos numéricos , Investigación Biomédica/educación , Etnicidad/psicología , Humanos , Neoplasias/diagnóstico , Investigadores/psicología , Estados Unidos
7.
Artículo en Inglés | MEDLINE | ID: mdl-30393577

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) develops from precancerous adenomatous polyps to malignant lesions of adenocarcinoma. Elucidating inhibition mechanisms for this route in patients with a risk of developing CRC is highly important for a potential diagnostic or prognostic marker. Differential expression of nuclear-encoded cytochrome c oxidase subunit 4 (COXIV) seems to contribute to a more unregulated respiration due to loss of ATP inhibition. Majority of energy for tumor transformations are mitochondrial origin. Differences in mitochondrial efficiency may be reflected in the progression of colorectal adenomatous polyps to adenocarcinomas. Here, we evaluate expression levels of COXIV isoform 1 (COXIV-1) and Mitochondrial (MT)-ATP synthase Subunit 6 (ATPase6) in adenomas of tubular, tubulovillous and villous tissues as compared to adenocarcinoma tissues. METHOD: Both RT-qPCR and western blot techniques were used to assess COXIV-1 and ATPase6 expression levels in 42 pairs of patients' tissue samples. Protein carbonyl assay was performed to determine levels of oxidized proteins, as a measurement of ROS productions, in the tissue samples. RESULTS: Differential RNA expression levels of COXIV-1 and ATPase6 from whole tissues were observed. Interestingly, RNA expression levels obtained from mitochondrial for COXIV-1 were significantly decreased in tubulovillous, villous adenomas and adenocarcinoma, but not in the tubular-polyps. Moreover, mitochondrial ATPase6 RNA expression levels decreased progressively from adenopolyps to adenocarcinoma. In mitochondrial protein, expression levels of both genes progressively decreased with a three folds from adenomatous polyps to adenocarcinoma. Whilst the ATPase6 protein expression significantly decreased in adenocarcinoma compared to villous, conversely, the levels of oxidized carbonyl proteins were considerably increased from adenomatous polyps to adenocarcinoma. CONCLUSION: Our findings provide evidence that decreased mitochondrial protein expression of COXIV-1 and ATPase6 correlates with increased ROS production during colorectal adenomatous polyps' progression, suggesting the pivotal role of COXIV-1 in energy metabolism of colorectal cells as they progress from polyps to carcinoma.

9.
Int J Clin Med ; 6(4): 288-299, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26069854

RESUMEN

INTRODUCTION: Adenopolyps patients have a three-fold higher risk of colon cancer over the general population, which increases to six-fold if the polyps are multiple and with lower survival among African American population. Currently, 6% of CRC can be ascribed to mutations in particular genes. Moreover, the optimal management of patients with colorectal adenopolyps depends on the accuracy of appropriate staging strategies because patients with similar colorectal adenocarcinoma architecture display heterogeneity in the course and outcome of the disease. Oxidative stress, due to an imbalance between reactive oxygen species (ROS) and antioxidant capacities as well as a disruption of redox signaling, causes a wide range of damage to DNA, proteins, and lipids which promote tumor formation. OBJECTIVE/METHOD: This study applied spectrophotometric, dinitrophenylhydrazone (DNPH) assay, two-dimensional gel electrophoresis, and western blot analyses to assess the levels of oxidatively modified proteins in 41 pairs of primary colorectal tissues including normal/surrounding, adenopolyps (tubular, tubulovillous, villous, polypvillous) and carcinoma. Analysis of variance (ANOVA) and Student's t-tests were utilized for the resulting data set. RESULTS: Our data showed that the levels of reactive protein carbonyl groups significantly increased as colorectal adenopolyps progresses to malignancy. No significant differences were found in the levels of carbonyl proteins between gender samples analyzed. For African American patients, there were, relative to Caucasians, 10% higher levels of reactive carbonyls in proteins of tubulovillous tissue samples (P < 0.05) and over 36% higher in levels in adenocarcinomas (P < 0.05). In normal tissues and tubular, there were no significant differences between the two groups in levels of protein carbonyls. Differences in the levels of protein carbonyl expression within individual patient samples with different number of tumor cells were notably evident. CONCLUSION: Results suggested that oxidative stress could be involved in the modification of oxidatively carbonyl proteins in the precancer stages, leading to increased aggressiveness of colorectal polyps.

10.
Clin Cancer Res ; 20(18): 4849-60, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25070836

RESUMEN

PURPOSE: The aim of this study is to explore the efficacy and define mechanisms of action of coadministration of the PI3K/mTOR inhibitor BEZ235 and pan-HDAC inhibitor panobinostat in diffuse large B-cell lymphoma (DLBCL) cells. EXPERIMENTAL DESIGN: Various DLBCL cells were exposed to panobinostat and BEZ235 alone or together after which apoptosis and signaling/survival pathway perturbations were monitored by flow cytometry and Western blot analysis. Genetic strategies defined the functional significance of such changes, and xenograft mouse models were used to assess tumor growth and animal survival. RESULTS: Panobinostat and BEZ235 interacted synergistically in ABC-, GC-, and double-hit DLBCL cells and MCL cells but not in normal CD34(+) cells. Synergism was associated with pronounced AKT dephosphorylation, GSK3 dephosphorylation/activation, Mcl-1 downregulation, Bim upregulation, increased Bcl-2/Bcl-xL binding, diminished Bax/Bak binding to Bcl-2/Bcl-xL/Mcl-1, increased γH2A.X phosphorylation and histone H3/H4 acetylation, and abrogation of p21(CIP1) induction. BEZ235/panobinostat lethality was not susceptible to stromal/microenvironmental forms of resistance. Genetic strategies confirmed significant functional roles for AKT inactivation, Mcl-1 downregulation, Bim upregulation, and Bax/Bak in synergism. Finally, coadministration of BEZ235 with panobinostat in immunocompromised mice bearing SU-DHL4-derived tumors significantly reduced tumor growth in association with similar signaling changes observed in vitro, and combined treatment increased animal survival compared with single agents. CONCLUSIONS: BEZ235/panobinostat exhibits potent anti-DLBCL activity, including in poor-prognosis ABC- and double-hit subtypes, but not in normal CD34(+) cells. Synergism is most likely multifactorial, involving AKT inactivation/GSK3 activation, Bim upregulation, Mcl-1 downregulation, enhanced DNA damage, and is operative in vivo. Combined PI3K/mTOR and HDAC inhibition warrants further attention in DLBCL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ácidos Hidroxámicos/administración & dosificación , Imidazoles/administración & dosificación , Indoles/administración & dosificación , Linfoma de Células B Grandes Difuso/metabolismo , Quinolinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Immunoblotting , Inmunoprecipitación , Técnicas In Vitro , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Panobinostat , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA