Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 150(2): 264-78, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817890

RESUMEN

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Asunto(s)
Evolución Clonal , Leucemia Mieloide Aguda/genética , Mutación , Adulto , Anciano , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Estudio de Asociación del Genoma Completo , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/fisiopatología , Masculino , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , Recurrencia , Piel/metabolismo , Adulto Joven
2.
Nature ; 481(7382): 506-10, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22237025

RESUMEN

Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.


Asunto(s)
Evolución Clonal/genética , Genoma Humano/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Daño del ADN/efectos de los fármacos , Análisis Mutacional de ADN , Genes Relacionados con las Neoplasias/genética , Genoma Humano/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutagénesis/efectos de los fármacos , Mutagénesis/genética , Recurrencia , Reproducibilidad de los Resultados
3.
Nature ; 486(7403): 353-60, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22722193

RESUMEN

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Aromatasa/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Genoma Humano/genética , Anastrozol , Androstadienos/farmacología , Androstadienos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Reparación del ADN , Exoma/genética , Exones/genética , Femenino , Variación Genética/genética , Humanos , Letrozol , MAP Quinasa Quinasa 4/genética , Quinasa 1 de Quinasa de Quinasa MAP/genética , Mutación/genética , Nitrilos/farmacología , Nitrilos/uso terapéutico , Receptores de Estrógenos/metabolismo , Resultado del Tratamiento , Triazoles/farmacología , Triazoles/uso terapéutico
4.
N Engl J Med ; 368(22): 2059-74, 2013 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-23634996

RESUMEN

BACKGROUND: Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS: We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS: AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS: We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).


Asunto(s)
Leucemia Mieloide Aguda/genética , Mutación , Adulto , Islas de CpG , Metilación de ADN , Epigenómica , Femenino , Expresión Génica , Fusión Génica , Genoma Humano , Humanos , Leucemia Mieloide Aguda/clasificación , Masculino , MicroARNs/genética , Persona de Mediana Edad , Nucleofosmina , Análisis de Secuencia de ADN/métodos
5.
Genome Res ; 23(3): 431-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23222849

RESUMEN

Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline Nf1 gene loss is coupled with bi-allelic somatic (glial progenitor cell) Nf1 gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NF1-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NF1-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NF1 loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%-60% of cells in the tumor mass exhibited somatic NF1 loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NF1 loss is likely sufficient for PA formation in cooperation with a proper stromal environment.


Asunto(s)
Astrocitoma/diagnóstico , Astrocitoma/genética , Genes de Neurofibromatosis 1 , Neurofibromina 1/genética , Adolescente , Alelos , Astrocitoma/patología , Niño , Variaciones en el Número de Copia de ADN , Metilación de ADN , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Pérdida de Heterocigocidad , Masculino , Mutación , Neurofibromina 1/metabolismo , Fenotipo , Reproducibilidad de los Resultados , Alineación de Secuencia , Análisis de Secuencia de ADN , Adulto Joven
6.
Nature ; 464(7291): 999-1005, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20393555

RESUMEN

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Genoma Humano/genética , Mutación/genética , Trasplante de Neoplasias , Adulto , Neoplasias de la Mama/patología , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Frecuencia de los Genes/genética , Genómica , Humanos , Translocación Genética/genética , Trasplante Heterólogo , alfa Catenina/genética
7.
Bioinformatics ; 28(14): 1923-4, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22563071

RESUMEN

UNLABELLED: Despite recent progress, computational tools that identify gene fusions from next-generation whole transcriptome sequencing data are often limited in accuracy and scalability. Here, we present a software package, BreakFusion that combines the strength of reference alignment followed by read-pair analysis and de novo assembly to achieve a good balance in sensitivity, specificity and computational efficiency. AVAILABILITY: http://bioinformatics.mdanderson.org/main/BreakFusion


Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Línea Celular Tumoral , Humanos , Alineación de Secuencia
8.
N Engl J Med ; 361(11): 1058-66, 2009 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-19657110

RESUMEN

BACKGROUND: The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS: We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS: We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS: By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Mutación , Adulto , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Nucleofosmina , Mutación Puntual , Análisis de Secuencia de ADN/métodos
9.
Nat Methods ; 6(9): 677-81, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19668202

RESUMEN

Detection and characterization of genomic structural variation are important for understanding the landscape of genetic variation in human populations and in complex diseases such as cancer. Recent studies demonstrate the feasibility of detecting structural variation using next-generation, short-insert, paired-end sequencing reads. However, the utility of these reads is not entirely clear, nor are the analysis methods with which accurate detection can be achieved. The algorithm BreakDancer predicts a wide variety of structural variants including insertion-deletions (indels), inversions and translocations. We examined BreakDancer's performance in simulation, in comparison with other methods and in analyses of a sample from an individual with acute myeloid leukemia and of samples from the 1,000 Genomes trio individuals. BreakDancer sensitively and accurately detected indels ranging from 10 base pairs to 1 megabase pair that are difficult to detect via a single conventional approach.


Asunto(s)
ADN/genética , Variación Genética , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Secuencia de Bases , Simulación por Computador , Genoma Humano , Humanos , Leucemia Mieloide Aguda/genética
10.
Bioinformatics ; 27(12): 1595-602, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21498403

RESUMEN

MOTIVATION: The expansion of cancer genome sequencing continues to stimulate development of analytical tools for inferring relationships between somatic changes and tumor development. Pathway associations are especially consequential, but existing algorithms are demonstrably inadequate. METHODS: Here, we propose the PathScan significance test for the scenario where pathway mutations collectively contribute to tumor development. Its design addresses two aspects that established methods neglect. First, we account for variations in gene length and the consequent differences in their mutation probabilities under the standard null hypothesis of random mutation. The associated spike in computational effort is mitigated by accurate convolution-based approximation. Second, we combine individual probabilities into a multiple-sample value using Fisher-Lancaster theory, thereby improving differentiation between a few highly mutated genes and many genes having only a few mutations apiece. We investigate accuracy, computational effort and power, reporting acceptable performance for each. RESULTS: As an example calculation, we re-analyze KEGG-based lung adenocarcinoma pathway mutations from the Tumor Sequencing Project. Our test recapitulates the most significant pathways and finds that others for which the original test battery was inconclusive are not actually significant. It also identifies the focal adhesion pathway as being significantly mutated, a finding consistent with earlier studies. We also expand this analysis to other databases: Reactome, BioCarta, Pfam, PID and SMART, finding additional hits in ErbB and EPHA signaling pathways and regulation of telomerase. All have implications and plausible mechanistic roles in cancer. Finally, we discuss aspects of extending the method to integrate gene-specific background rates and other types of genetic anomalies. AVAILABILITY: PathScan is implemented in Perl and is available from the Genome Institute at: http://genome.wustl.edu/software/pathscan.


Asunto(s)
Adenocarcinoma , Genes Relacionados con las Neoplasias , Neoplasias Pulmonares , Mutación , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Genómica , Humanos , Neoplasias Pulmonares/genética , Programas Informáticos
11.
Mo Med ; 114(3): 150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30228566
12.
Nature ; 432(7018): 761-4, 2004 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-15592415

RESUMEN

Strategies for assembling large, complex genomes have evolved to include a combination of whole-genome shotgun sequencing and hierarchal map-assisted sequencing. Whole-genome maps of all types can aid genome assemblies, generally starting with low-resolution cytogenetic maps and ending with the highest resolution of sequence. Fingerprint clone maps are based upon complete restriction enzyme digests of clones representative of the target genome, and ultimately comprise a near-contiguous path of clones across the genome. Such clone-based maps are used to validate sequence assembly order, supply long-range linking information for assembled sequences, anchor sequences to the genetic map and provide templates for closing gaps. Fingerprint maps are also a critical resource for subsequent functional genomic studies, because they provide a redundant and ordered sampling of the genome with clones. In an accompanying paper we describe the draft genome sequence of the chicken, Gallus gallus, the first species sequenced that is both a model organism and a global food source. Here we present a clone-based physical map of the chicken genome at 20-fold coverage, containing 260 contigs of overlapping clones. This map represents approximately 91% of the chicken genome and enables identification of chicken clones aligned to positions in other sequenced genomes.


Asunto(s)
Pollos/genética , Genoma , Genómica , Mapeo Físico de Cromosoma , Animales , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Mapeo Contig , Dermatoglifia del ADN , Ligamiento Genético/genética , Lugares Marcados de Secuencia
13.
Genome Biol ; 14(8): R87, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23972288

RESUMEN

Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTrans.


Asunto(s)
Neoplasias de la Mama/genética , Puntos de Rotura del Cromosoma , Fusión de Oncogenes , Proteínas de Fusión Oncogénica/genética , Programas Informáticos , Atlas como Asunto , Línea Celular Tumoral , Femenino , Dosificación de Gen , Genoma Humano , Humanos , Anotación de Secuencia Molecular , Sensibilidad y Especificidad
14.
Genome Res ; 16(6): 768-75, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16741162

RESUMEN

We describe a targeted approach to improve the contiguity of whole-genome shotgun sequence (WGS) assemblies at run-time, using information from Bacterial Artificial Chromosome (BAC)-based physical maps. Clone sizes and overlaps derived from clone fingerprints are used for the calculation of length constraints between any two BAC neighbors sharing 40% of their size. These constraints are used to promote the linkage and guide the arrangement of sequence contigs within a sequence scaffold at the layout phase of WGS assemblies. This process is facilitated by FASSI, a stand-alone application that calculates BAC end and BAC overlap length constraints from clone fingerprint map contigs created by the FPC package. FASSI is designed to work with the assembly tool PCAP, but its output can be formatted to work with other WGS assembly algorithms able to use length constraints for individual clones. The FASSI method is simple to implement, potentially cost-effective, and has resulted in the increase of scaffold contiguity for both the Drosophila melanogaster and Cryptococcus gattii genomes when compared to a control assembly without map-derived constraints. A 6.5-fold coverage draft DNA sequence of the Pan troglodytes (chimpanzee) genome was assembled using map-derived constraints and resulted in a 26.1% increase in scaffold contiguity.


Asunto(s)
Cryptococcus/genética , Drosophila melanogaster/genética , Genoma , Pan troglodytes/genética , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN/métodos , Animales , Cromosomas Artificiales Bacterianos/genética , Bases de Datos de Ácidos Nucleicos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA